Resumen
Platform motions induced by waves pose a challenge to accurately predict the aerodynamic performance of floating offshore wind turbines (FOWTs). In view of this, the power performance and wake structure of FOWTs under platform pitch, surge, and their combined motions were investigated in this paper, using the computational fluid dynamics software, STAR-CCM+, with overset meshing and rigid body motion techniques. First, the simulation cases in single and same-phase combined motions with different amplitudes and frequencies were performed. Afterward, the approach of calculating the phase difference between pitch and surge motions was proposed to investigate the influence of the combined motion with phase difference on the aerodynamic performance. Results show that the increment of amplitude and frequency augments the mean power output and aggravates the power fluctuation in single and same-phase combined motions. The intensity of power variation under combined motion with a phase difference is weakened at 0.1 Hz compared to the single motion, while enhanced at 0.2 Hz, showing a different influence law on the aerodynamic performance. In addition, this paper established the power fluctuation table based on real sea states of Shidao in China, providing a certain reference for the controller design in this sea area.