Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 6 (2023)  /  Artículo
ARTÍCULO
TITULO

Target Detection and Recognition for Traffic Congestion in Smart Cities Using Deep Learning-Enabled UAVs: A Review and Analysis

Sundas Iftikhar    
Muhammad Asim    
Zuping Zhang    
Ammar Muthanna    
Junhong Chen    
Mohammed El-Affendi    
Ahmed Sedik and Ahmed A. Abd El-Latif    

Resumen

In smart cities, target detection is one of the major issues in order to avoid traffic congestion. It is also one of the key topics for military, traffic, civilian, sports, and numerous other applications. In daily life, target detection is one of the challenging and serious tasks in traffic congestion due to various factors such as background motion, small recipient size, unclear object characteristics, and drastic occlusion. For target examination, unmanned aerial vehicles (UAVs) are becoming an engaging solution due to their mobility, low cost, wide field of view, accessibility of trained manipulators, a low threat to people?s lives, and ease to use. Because of these benefits along with good tracking effectiveness and resolution, UAVs have received much attention in transportation technology for tracking and analyzing targets. However, objects in UAV images are usually small, so after a neural estimation, a large quantity of detailed knowledge about the objects may be missed, which results in a deficient performance of actual recognition models. To tackle these issues, many deep learning (DL)-based approaches have been proposed. In this review paper, we study an end-to-end target detection paradigm based on different DL approaches, which includes one-stage and two-stage detectors from UAV images to observe the target in traffic congestion under complex circumstances. Moreover, we also analyze the evaluation work to enhance the accuracy, reduce the computational cost, and optimize the design. Furthermore, we also provided the comparison and differences of various technologies for target detection followed by future research trends.

 Artículos similares

       
 
Zitong Wang, Enrang Zheng, Jianguo Liu and Tuo Guo    
Traditional methods of orthogonal basis function decomposition have been extensively used to detect magnetic anomaly signals. However, the determination of the relative velocity between the detection platform and the magnetic target remains elusive in pr... ver más
Revista: Applied Sciences

 
Abdel Hamid Mbouombouo Mboungam, Yongfeng Zhi and Cedric Karel Fonzeu Monguen    
Radar detection is a technology frequently used to detect objects and measure the range, angle, or velocity of those objects. Several studies have been performed to improve the accuracy and performance of detection methods, but they encountered a strong ... ver más
Revista: Applied Sciences

 
Chengyang Peng, Shaohua Jin, Gang Bian, Yang Cui and Meina Wang    
The scarcity and difficulty in acquiring Side-scan sonar target images limit the application of deep learning algorithms in Side-scan sonar target detection. At present, there are few amplification methods for Side-scan sonar images, and the amplificatio... ver más

 
Linhua Zhang, Ning Xiong, Wuyang Gao and Peng Wu    
With the exponential growth of remote sensing images in recent years, there has been a significant increase in demand for micro-target detection. Recently, effective detection methods for small targets have emerged; however, for micro-targets (even fewer... ver más
Revista: Information

 
Wenbo Peng and Jinjie Huang    
Current object detection methods typically focus on addressing the distribution discrepancies between source and target domains. However, solely concentrating on this aspect may lead to overlooking the inherent limitations of the samples themselves. This... ver más
Revista: Applied Sciences