Resumen
Product reviews provide crucial information for both consumers and businesses, offering insights needed before purchasing a product or service. However, existing sentiment analysis methods, especially for Chinese language, struggle to effectively capture contextual information due to the complex semantics, multiple sentiment polarities, and long-term dependencies between words. In this paper, we propose a sentiment classification method based on the BiLSTM algorithm to address these challenges in natural language processing. Self-Attention-CNN BiLSTM (SAC-BiLSTM) leverages dual channels to extract features from both character-level embeddings and word-level embeddings. It combines BiLSTM and Self-Attention mechanisms for feature extraction and weight allocation, aiming to overcome the limitations in mining contextual information. Experiments were conducted on the onlineshopping10cats dataset, which is a standard corpus of e-commerce shopping reviews available in the ChineseNlpCorpus 2018. The experimental results demonstrate the effectiveness of our proposed algorithm, with Recall, Precision, and F1 scores reaching 0.9409, 0.9369, and 0.9404, respectively.