Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 8 Par: 9 (2016)  /  Artículo
ARTÍCULO
TITULO

Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs?The Case of Mangla Dam in Pakistan

Muhammad Babur    
Mukand Singh Babel    
Sangam Shrestha    
Akiyuki Kawasaki and Nitin K. Tripathi    

Resumen

Assessment of climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs). This paper discusses the consequences of climate change on discharge. Historical climatic and gauging data were collected from different stations within a watershed. Bias correction was performed on GCMs temperature and precipitation data. After successful development of the hydrological modeling system (SWAT) for the basin, streamflow was simulated for three future periods (2011?2040, 2041?2070, and 2071?2100) and compared with the baseline data (1981?2010) to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both RCP 4.5 and RCP 8.5 scenarios. Winter and spring showed a noticeable increase in streamflow, while summer and autumn showed a decrease in streamflow. High flows were predicted to increase, but median flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of high flow is likely to be more in the future. It was also noted that peaks were predicted to shift from May to July in the future, and the center-of-volume date of the annual flow may vary from -11 to 23 days in the basin, under both RCP 4.5 and RCP 8.5. As a whole, the Mangla basin will face more floods and less droughts in the future due to the projected increase in high and low flows, decrease in median flows and greater temporal and magnitudinal variations in peak flows. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.

 Artículos similares

       
 
Sayed Shah Jan Sadiqi, Won-Ho Nam, Kyoung-Jae Lim and Eunmi Hong    
This study investigated the effects of nonpoint source (NPS) pollution reduction and pollutant dynamics in a highland agricultural watershed in Korea. We employed the SWAT model to simulate hydrological processes and pollution transport within the waters... ver más
Revista: Water

 
Amin Habibi and Nafise Kahe    
This study investigates how permeable and cool pavements, green roofs, and living walls affect microclimatic conditions and buildings? energy consumption in an arid urban setting: Shiraz. The study aims to evaluate the role of green infrastructure in mit... ver más
Revista: Buildings

 
Kristina Mazur, Mischa Saleh and Mirko Hornung    
Early and rapid environmental assessment of newly developed aircraft concepts is eminent in today?s climate debate. This can shorten the decision-making process and thus accelerate the entry into service of climate-friendly technologies. A holistic appro... ver más
Revista: Aerospace

 
Filippo Cucinotta, Emmanuele Barberi and Fabio Salmeri    
The naval sector holds paramount importance for the global economy, yet it entails significant environmental impacts throughout the entire life cycle of ships. This review explores the application of life-cycle assessment (LCA) in the naval sector, a met... ver más

 
Jhon B. Valencia, Vladimir V. Guryanov, Jeison Mesa-Diez, Nilton Diaz, Daniel Escobar-Carbonari and Artyom V. Gusarov    
This paper presents a hydrological assessment of the 113,981 km2 Meta River basin in Colombia using 13 global climate models to predict water yield for 2050 under two CMIP6 scenarios, SSP 4.5 and SSP 8.5. Despite mixed performance across subbasins, the m... ver más
Revista: Hydrology