Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Agriculture  /  Vol: 13 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Improved YOLOv8-Seg Network for Instance Segmentation of Healthy and Diseased Tomato Plants in the Growth Stage

Xiang Yue    
Kai Qi    
Xinyi Na    
Yang Zhang    
Yanhua Liu and Cuihong Liu    

Resumen

The spread of infections and rot are crucial factors in the decrease in tomato production. Accurately segmenting the affected tomatoes in real-time can prevent the spread of illnesses. However, environmental factors and surface features can affect tomato segmentation accuracy. This study suggests an improved YOLOv8s-Seg network to perform real-time and effective segmentation of tomato fruit, surface color, and surface features. The feature fusion capability of the algorithm was improved by replacing the C2f module with the RepBlock module (stacked by RepConv), adding SimConv convolution (using the ReLU function instead of the SiLU function as the activation function) before two upsampling in the feature fusion network, and replacing the remaining conventional convolution with SimConv. The F1 score was 88.7%, which was 1.0%, 2.8%, 0.8%, and 1.1% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm, respectively. Meanwhile, the segment mean average precision (segment mAP@0.5) was 92.2%, which was 2.4%, 3.2%, 1.8%, and 0.7% higher than that of the YOLOv8s-Seg algorithm, YOLOv5s-Seg algorithm, YOLOv7-Seg algorithm, and Mask RCNN algorithm. The algorithm can perform real-time instance segmentation of tomatoes with an inference time of 3.5 ms. This approach provides technical support for tomato health monitoring and intelligent harvesting.

 Artículos similares

       
 
Ping Dong, Kuo Li, Ming Wang, Feitao Li, Wei Guo and Haiping Si    
In addition to the conventional situation of detecting a single disease on a single leaf in corn leaves, there is a complex phenomenon of multiple diseases overlapping on a single leaf (compound diseases). Current research on corn leaf disease detection ... ver más
Revista: Agriculture

 
Junsheng Liu, Guangze Zhao, Shuangxi Liu, Yi Liu, Huawei Yang, Jingwei Sun, Yinfa Yan, Guoqiang Fan, Jinxing Wang and Hongjian Zhang    
In the realm of automated apple picking operations, the real-time monitoring of apple maturity and diameter characteristics is of paramount importance. Given the constraints associated with feature detection of apples in automated harvesting, this study ... ver más
Revista: Agronomy

 
Xingdong Sun, Yukai Zheng, Delin Wu and Yuhang Sui    
The key technology of automated apple harvesting is detecting apples quickly and accurately. The traditional detection methods of apple detection are often slow and inaccurate in unstructured orchards. Therefore, this article proposes an improved YOLOv5s... ver más
Revista: Agronomy

 
Chenglin Wang, Qiyu Han, Jianian Li, Chunjiang Li and Xiangjun Zou    
Blueberry is among the fruits with high economic gains for orchard farmers. Identification of blueberry fruits with different maturities has economic significance to help orchard farmers plan pesticide application, estimate yield, and conduct harvest ope... ver más
Revista: Agronomy

 
Xiuying Xu, Yingying Gao, Changhao Fu, Jinkai Qiu and Wei Zhang    
The cover of corn stover has a significant effect on the emergence and growth of soybean seedlings. Detecting corn stover covers is crucial for assessing the extent of no-till farming and determining subsidies for stover return; however, challenges such ... ver más
Revista: Agriculture