Resumen
The new challenges in assessment of water resources demand new approaches and tools, such as the use of hydrologic models, which could serve to assist managers in the prediction, planning and management of catchment water supplies in view of increased demand of water for irrigation and climatic change. Good characterization of the spatial patterns of climate variables is of paramount importance in hydrological modelling. This is especially so when modelling mountain environments which are characterized by strong altitudinal climate gradients. However, very often there is a poor distribution of climatic stations in these areas, which in many cases, results in under representation of high altitude areas with respect to climatic data. This results in the poor performance of the models. In the present study, the Soil and Water Assessment Tool (SWAT) model was applied to the Barasona reservoir catchment in the Central Spanish Pyrenees in order to assess the influence of different climatic characterizations in the monthly river discharges. Four simulations with different input data were assessed, using only the available climate data (A1); the former plus one synthetic dataset at a higher altitude (B1); and both plus the altitudinal climate gradient (A2 and B2). The model?s performance was evaluated against the river discharges for the representative periods of 2003?2005 and 1994?1996 by means of commonly used statistical measures. The best results were obtained using the altitudinal climate gradient alone (scenario A2). This study provided insight into the importance of taking into account the sources and the spatial distribution of weather data in modelling water resources in mountainous catchments.