Resumen
This paper discusses the general conditions relating to ballistic head protection, analyzing the risks that may occur on contemporary battlefields. A thorough literature review has enabled us to present development trends for helmets used in the largest armies in the world. The authors have focused on impacts to the helmet shell, overloading the entire helmet-protected head?neck system. The main objective of this study is to investigate the protective capability of a helmet shell when subjected to projectile?helmet contact, with contact curvature taken as being an indicator of the impact energy concentration. Blunt head trauma was estimated using backface deformation (BFD). The Wz.93 combat helmet was used for testing. Analytically, dependencies were derived to determine the scope of BFD. A five-parameter model of the helmet piercing process was adopted, thus obtaining the optimal BFD range. Verification of theoretical considerations was carried out on a specially developed research stand. In the ballistic tests, dynamic deflection of the helmet?s body was registered using a speed camera. On the impact testing stand, a fragment of the helmet was pierced, producing results in the low impact velocity range. Data have been presented on the appropriate graph in order to compare them with values specified in the relevant standard and existing literature. Our results correlate well with the norm and literature values.