Redirigiendo al acceso original de articulo en 16 segundos...
ARTÍCULO
TITULO

Big Data Analytics with the Multivariate Adaptive Regression Splines to Analyze Key Factors Influencing Accident Severity in Industrial Zones of Thailand: A Study on Truck and Non-Truck Collisions

Manlika Seefong    
Panuwat Wisutwattanasak    
Chamroeun Se    
Kestsirin Theerathitichaipa    
Sajjakaj Jomnonkwao    
Thanapong Champahom    
Vatanavongs Ratanavaraha and Rattanaporn Kasemsri    

Resumen

Machine learning currently holds a vital position in predicting collision severity. Identifying factors associated with heightened risks of injury and fatalities aids in enhancing road safety measures and management. Presently, Thailand faces considerable challenges with respect to road traffic accidents. These challenges are particularly acute in industrial zones, where they contribute to a rise in injuries and fatalities. The mixture of heavy traffic, comprising both trucks and non-trucks, significantly amplifies the risk of accidents. This situation, hence, generates profound concerns for road safety in Thailand. Consequently, discerning the factors that influence the severity of injuries and fatalities becomes pivotal for formulating effective road safety policies and measures. This study is specifically aimed at predicting the factors contributing to the severity of accidents involving truck and non-truck collisions in industrial zones. It considers a variety of aspects, including roadway characteristics, underlying assumptions of cause, crash characteristics, and weather conditions. Due to the fact that accident data is big data with specific characteristics and complexity, with the employment of machine learning in tandem with the Multi-variate Adaptive Regression Splines technique, we can make precise predictions to identify the factors influencing the severity of collision outcomes. The analysis demonstrates that various factors augment the severity of accidents involving trucks. These include darting in front of a vehicle, head-on collisions, and pedestrian collisions. Conversely, for non-truck related collisions, the significant factors that heighten severity are tailgating, running signs/signals, angle collisions, head-on collisions, overtaking collisions, pedestrian collisions, obstruction collisions, and collisions during overcast conditions. These findings illuminate the significant factors influencing the severity of accidents involving trucks and non-trucks. Such insights provide invaluable information for developing targeted road safety measures and policies, thereby contributing to the mitigation of injuries and fatalities.

 Artículos similares

       
 
Wei-Ling Hsu, Yi-Jheng Chang, Lin Mou, Juan-Wen Huang and Hsin-Lung Liu    
Historic urban areas are the foundations of urban development. Due to rapid urbanization, the sustainable development of historic urban areas has become challenging for many cities. Elements of tourism and tourism service facilities play an important rol... ver más

 
Shaopan Li, Yiping Lin and Hong Huang    
Estimating disaster relief supplies is crucial for governments coordinating and executing disaster relief operations. Rapid and accurate estimation of disaster relief supplies can assist the government to optimize the allocation of resources and better o... ver más

 
Andreas F. Gkontzis, Sotiris Kotsiantis, Georgios Feretzakis and Vassilios S. Verykios    
In an epoch characterized by the swift pace of digitalization and urbanization, the essence of community well-being hinges on the efficacy of urban management. As cities burgeon and transform, the need for astute strategies to navigate the complexities o... ver más

 
Kenneth David Strang    
A critical worldwide problem is that ransomware cyberattacks can be costly to organizations. Moreover, accidental employee cybercrime risk can be challenging to prevent, even by leveraging advanced computer science techniques. This exploratory project us... ver más

 
Lei Zhou, Weiye Xiao, Chen Wang, Haoran Wang     Pág. 143 - 161
Human mobility datasets, such as traffic flow data, reveal the connections between urban spaces. A novel framework is proposed to explore the spatial association between urban commercial and residential spaces via consumption travel flows in Shanghai. A ... ver más