Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

A Fault Feature Extraction Method Based on Second-Order Coupled Step-Varying Stochastic Resonance for Rolling Bearings

Lu Lu    
Yu Yuan    
Chen Chen and Wu Deng    

Resumen

The fault feature extraction method can be applied in health monitoring of rolling bearings.

Palabras claves

 Artículos similares

       
 
Weihan Huang, Ke Gao and Yu Feng    
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamic... ver más

 
Zhuofan Xu, Jing Yan, Guoqing Sui, Yanze Wu, Meirong Qi, Zilong Zhang, Yingsan Geng and Jianhua Wang    
High-voltage circuit breakers (HVCBs) handle the important tasks of controlling and safeguarding electricity networks. In the case of insufficient data samples, improving the accuracy of the traditional HVCB mechanical fault diagnosis method is difficult... ver más
Revista: Applied Sciences

 
Zhenyu Yin, Feiqing Zhang, Guangyuan Xu, Guangjie Han and Yuanguo Bi    
Confronting the challenge of identifying unknown fault types in rolling bearing fault diagnosis, this study introduces a multi-scale bearing fault diagnosis method based on transfer learning. Initially, a multi-scale feature extraction network, MBDCNet, ... ver más
Revista: Applied Sciences

 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Cheng-Jian Lin, Chun-Hui Lin and Frank Lin    
The spindle of a machine tool plays a key role in machining because the wear of a spindle might result in inaccurate production and decreased productivity. To understand the condition of a machine tool, a vector-based convolutional fuzzy neural network (... ver más
Revista: Applied Sciences