Resumen
This paper deals with an approximation of a first derivative of a signal using a dynamic system of the first order. After formulating the problem, a proposition and a theorem are proven for a possible approximation structure, which consists of a dynamic system. In particular, a proposition based on a Lyapunov approach is proven to show the convergence of the approximation. The proven theorem is a constructive one and shows directly the suboptimality condition in the presence of noise. Based on these two results, an adaptive algorithm is conceived to calculate the derivative of a signal with convergence in infinite time. Results are compared with an approximation of the derivative using an adaptive Kalman filter (KF).