Resumen
At 2 µm wavelengths (149.9 THz), hollow-core photonics band gap fibers have higher light power damage thresholds, stable polarization states, and lower losses of 0.1 dB/km. Additionally, a thulium-doped fiber amplifier can provide a gain of >35 dB. Specifically, an indium-rich InGaAs photodetector shows a naturally higher photoresponsivity at 2 µm wavelengths than the C-band. Therefore, using tunable photo-generated microwave technology at 2 µm wavelengths could achieve higher photo-to-electric power conversion efficiencies for higher RF output power applications using the same method at the same frequency. Here, a double sideband with the carrier suppression modulation method was experimentally applied on 2 µm wavelengths to generate tunable and stable microwave carriers. Comparison experiments were also applied on the 1.55 µm (193.4 THz)/1.31 µm wavelengths (228.8 THz) based on the same indium-rich InGaAs photodetector. Through normalization on the wavelength-corresponded squared external quantum efficiency to visualize the photo-to-electric power conversion efficiency at different wavelengths under the same input optical signal power, the ratio between the results at 2 µm wavelengths and C/O-band is abstracted as 1.31/1.98, approaching theoretical estimations. This corresponds to a power conversion efficiency increasement of ~1.16 dB/~2.98 dB. To our knowledge, this is the first study on 2 micron wavelengths that proves the corresponding high efficiency power conversion property.