Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 10 Par: 23 (2020)  /  Artículo
ARTÍCULO
TITULO

Numerical Investigation of Tip Vortex Cavitation Inception and Noise of Underwater Propellers of Submarine Using Sequential Eulerian?Lagrangian Approaches

Garam Ku    
Cheolung Cheong    
Ilryong Park and Hanshin Seol    

Resumen

In this study, the high-fidelity numerical methods are developed to investigate the tip vortex cavitation (TVC) inception and noise of underwater propellers, namely, Model-A and Model-B, which are designed to investigate the effects of sweep angle on cavitation inception and noise. In addition, the entire body of the DARPA Suboff submarine is included to consider the effects of the inflow distortion originating from the boundary layer flow of the submarine body on the cavitating flow of the propellers. The Eulerian approach consisting of Reynolds-averaged Navier?Stokes (RANS) solver and the vortex model is coupled with the Lagrangian approach using the bubble dynamics equations and the acoustic analogy for nuclei initially distributed in inlet flow. First, three-dimensional incompressible unsteady RANS simulations are performed to predict the hydrodynamic flow field driven by underwater propellers installed on a DARPA Suboff submarine body. The Scully vortex model and dissipation vortex model (DVM) are used to regenerate the tip vortex dissipated by artificial numerical damping and low grid resolution around the vortex core center, which is identified by using minimum ?2-criterion in the swirling flow field originating from the propeller blade tip. Then, tip vortex cavitation inception is simulated by applying the bubble dynamics equations to nuclei initially distributed in the inflow region. The volume and location of each nucleus are obtained by solving the bubble dynamics equations on the flow field obtained using the Eulerian method. Finally, the cavitation noise is predicted by modeling each bubble with a point monopole source whose strength is proportional to its volume acceleration. The validity of the present numerical methods is confirmed by comparing the predicted acoustic pressure spectrum with the measured ones.

 Artículos similares

       
 
Wenjie Shen, Suofang Wang, Mengyuan Wang, Jia Suo and Zhao Zhang    
Improving airflow pressure is of great significance for the cooling and sealing of aeroengines. In a co-rotating cavity with radial inflow, vortex reducers are used to decrease the pressure drop. However, the performance of traditional vortex reducers is... ver más
Revista: Aerospace

 
Panagiotis D. Kordas, George N. Lampeas and Konstantinos T. Fotopoulos    
The main purpose of this study comprises the design and the development of a novel experimental configuration for carrying out tests on a full-scale stiffened panel manufactured of fiber-reinforced thermoplastic material. Two different test-bench design ... ver más
Revista: Aerospace

 
Junyao Zhang, Hao Zhan and Baigang Mi    
The submerged inlet exhibits good stealth characteristics and lower drag, but it has a low total pressure recovery coefficient and high distortion rate, which limits its widespread application. This paper proposes a vortex diverter aimed at enhancing the... ver más
Revista: Aerospace

 
Shuang Ruan, Ming Zhang, Shaofei Yang, Xiaohang Hu and Hong Nie    
A dynamic model is established to investigate the shimmy instability of a landing gear system, considering the influence of nonlinear damping. The stability criterion is utilized to determine the critical speed at which the landing gear system becomes un... ver más
Revista: Aerospace

 
Liyuan Wang, Pengfei Zhou, Jiayang Gu and Yapeng Li    
This study focuses on a large-scale cruise ship as the subject of research, with a particular emphasis on conditions not covered in the MSC.1/Circ.1533 guidelines. The investigation explores the impact of specific motion states of the cruise ship, includ... ver más