Resumen
Background: Soybean is one of major crop plants cultivated in numerous parts of the world, which is due to an increasing demand for plant protein. Both in Europe and Poland, much attention is paid to enhancing the production of their own fodder protein, as to reduce the import of soybean meal produced from genetically modified plants. Climate warming and breeding progress have made it possible to grow soybeans in central Europe. The yield potential of plants, including soybeans, can be enhanced by an application of biostimulants, which alleviate negative effects of stresses disturbing the life processes of plants. The objective of the present work was to evaluate, under the climatic conditions of central-eastern Poland, the yielding of three non-modified soybean cultivars treated with biostimulants. Methods: A field experiment was conducted in the years 2017?2019 in eastern Poland (central Europe). The soil of the experimental field belonged to the Haplic Luvisol group. The experimental factors included three non-GMO soybean cultivars (Abelina, Merlin, and SG Anser) and two biostimulants (Asahi SL and Improver). Results: Soybean seed yields were affected by the climatic conditions during the growing season, cultivars, and biostimulant applications. Regardless of cultivars and biostimulants, the highest yields were produced by plants grown in 2017 (on average, 3.41 Mg·ha-1), them being slightly lower in 2019 (on average, 3.0 Mg·ha-1) and the lowest in the dry 2018 (on average, 2.48 Mg·ha-1). Significant differences were recorded between cv. SG Anser (the average yield 2.73 Mg·ha-1) and Merlin (the average yield 3.31 Mg·ha-1). An application of biostimulants resulted in a significant increase in soybean seed yield compared with the control. Biostimulants contributed to a significant increase in the values of the remaining characteristics, i.e., 1000-seed weight, seed number per pod, and average number of seeds per pod.