Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

Temperature Accuracy Analysis by Land Cover According to the Angle of the Thermal Infrared Imaging Camera for Unmanned Aerial Vehicles

Kirim Lee and Won Hee Lee    

Resumen

Land surface temperature (LST) is one of the crucial factors that is important in various fields, including the study of climate change and the urban heat island (UHI) phenomenon. The existing LST was acquired using satellite imagery, but with the development of unmanned aerial vehicles (UAV) and thermal infrared (TIR) cameras, it has become possible to acquire LST with a spatial resolution of cm. The accuracy evaluation of the existing TIR camera for UAV was conducted by shooting vertically. However, in the case of a TIR camera, the temperature value may change because the emissivity varies depending on the viewing angle. Therefore, it is necessary to evaluate the accuracy of the TIR camera according to each angle. In this study, images were simultaneously acquired at 2?min intervals for each of the three research sites by TIR camera angles (70°, 80°, 90°). Then, the temperature difference by land cover was evaluated with respect to the LST obtained by laser thermometer and the LST obtained using UAV and TIR. As a result, the image taken at 80° showed the smallest difference compared with the value obtained with a laser thermometer, and the 70° image showed a large difference of 1?6 °C. In addition, in the case of the impervious surface, there was a large temperature difference by angle, and in the case of the water-permeable surface, there was no temperature difference by angle. Through this, 80° is best when acquiring TIR data, and if it is impossible to take images at 80°, it is considered good to acquire TIR images between 80° and 90°. To obtain more accurate LST, correction studies considering the external environment, camera attitude, and shooting height are needed in future studies.

 Artículos similares

       
 
Ling Zhou, Peng Yan, Yanjun Zhang, Honglei Lei, Shuren Hao, Yueqiang Ma and Shaoyou Sun    
The optimization of the production scheme for enhanced geothermal systems (EGS) in geothermal fields is crucial for enhancing heat production efficiency and prolonging the lifespan of thermal reservoirs. In this study, the 4100?4300 m granite diorite str... ver más
Revista: Water

 
Kazuhisa A. Chikita, Hideo Oyagi and Kazuhiro Amita    
A thermal system in the very deep Lake Tazawa (maximum depth, 423 m) was investigated by estimating the heat budget. In the heat budget estimate, the net heat input at the lake?s surface and the heat input by river inflow and groundwater inflow were cons... ver más
Revista: Hydrology

 
Yonghai He, Songtao Lv, Nasi Xie, Huilin Meng, Wei Lei, Changyu Pu, Huabao Ma, Ziyang Wang, Guozhi Zheng and Xinghai Peng    
This study addressed the complex problems of selecting a constitutive model to objectively characterize asphalt mixtures and accurately determine their viscoelastic properties, which are influenced by numerous variables. Inaccuracies in model or paramete... ver más
Revista: Buildings

 
Xie Lian, Xiaolong Hu, Liangsheng Shi, Jinhua Shao, Jiang Bian and Yuanlai Cui    
The parameters of the GR4J-CemaNeige coupling model (GR4neige) are typically treated as constants. However, the maximum capacity of the production store (parX1) exhibits time-varying characteristics due to climate variability and vegetation coverage chan... ver más
Revista: Water

 
Jingjing Fang, Yining Wang, Peng Jiang, Qin Ju, Chao Zhou, Yiran Lu, Pei Gao and Bo Sun    
Various methods have been developed to estimate daily crop coefficients, but their performance varies. In this paper, a comprehensive evaluation was conducted to estimate the crop coefficient of winter wheat in four growth stages based on the observed da... ver más
Revista: Water