Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 2 (2024)  /  Artículo
ARTÍCULO
TITULO

Design and Control Simulation Analysis of Tender Tea Bud Picking Manipulator

Peng Xue    
Qing Li and Guodong Fu    

Resumen

Aiming at the current complex problem of the mechanized high-quality picking of tender tea buds, this paper designs a tender tea bud-picking manipulator. In the picking process, the quality of the petiole and leaf blade of the tender tea bud is crucial, as the traditional cutting picking method destroys the cell structure of the tender tea buds, resulting in rapid oxidation of the cuts, thus losing the bright green appearance and pure taste. For this reason, this paper draws on the quality requirements of tender tea buds and traditional manual picking technology, simulating the process of the manual picking action, putting forward a ?rotary pull-up? clamping and ripping picking method, and designing the corresponding actuating structure. Using PVDF material piezoelectric thin-film sensors to detect the clamping force of the tender tea bud picking, the corresponding sensor hardware circuit is designed. In addition, the finite element analysis method is also used to carry out stress analysis on the mechanical fingers to verify the rationality of the automatic mechanism to ensure the high-quality picking of tender tea buds. In terms of the control of the manipulator, an SMC-PID control method is designed by using MATLAB/Simulink 2021 and Adam 2020 software for joint simulation. The way to control the closed-loop system angle and angular velocity error feedback is by adjusting the PID parameters, which quickly converts the sliding mode control to the sliding mode surface. The simulation results show that the SMC-PID control method proposed in this paper can meet the demand in tender tea bud picking and simultaneously has high control accuracy, response speed, and stability.

 Artículos similares

       
 
Ruichen He, Florian Holzapfel, Johannes Bröcker, Yi Lai and Shuguang Zhang    
The emergence of eVTOL (electrical Vertical Takeoff and Landing) aircraft necessitates the development of safe and efficient systems to meet stringent certification and operational requirements. The primary state-of-the-art technology for flight control ... ver más
Revista: Aerospace

 
Fangyou Yu, Zhanbiao Gao, Qifan Zhang, Lianjie Yue and Hao Chen    
Suppressing shock-induced flow separation has been a long-standing problem in the design of supersonic vehicles. To reduce the structural and design complexity of control devices, a passive control technique based on micro-serrations is proposed and its ... ver más
Revista: Aerospace

 
Chunyu Song, Teer Guo, Jianghua Sui and Xianku Zhang    
In order to solve the problem of the dynamic positioning control of large ships in rough sea and to meet the need for fixed-point operations, this paper proposes a dynamic positioning controller that can effectively achieve large ships? fixed-point contr... ver más

 
Paul Christoph Gembarski and Pauline Gast    
Configuring complex computer-aided design (CAD) assemblies just by modifying parameters requires the attention and abstraction of the users. This interaction cost can be lowered significantly by graphical interactive control elements that allow for drag ... ver más
Revista: Applied Sciences

 
Nader Vahdati, Aamna Alteneiji, Fook Fah Yap and Oleg Shiryayev    
Engine mounts serve three primary purposes: (1) to support the weight of the engine, (2) to lessen the transmitted engine disturbance forces to the vehicle structure/chassis or airplane fuselage, and (3) to limit the engine motion brought on by shock exc... ver más
Revista: Applied Sciences