Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Water  /  Vol: 12 Par: 7 (2020)  /  Artículo
ARTÍCULO
TITULO

Flood Mapping Uncertainty from a Restoration Perspective: A Practical Case Study

Cássio G. Rampinelli    
Ian Knack and Tyler Smith    

Resumen

Many hydrologic studies that are the basis for water resources planning and management rely on streamflow information. Calibration and use of hydrologic models to extend flow series based on rainfall data, perform flood frequency analysis, or develop flood maps for land use planning and design of engineering works, such as channels, dams, bridges, and water intake, are examples of such studies. In most real-world engineering applications, errors in flow data are neglected or not adequately addressed. However, because flows are estimated based on the water level measurements by fitted rating curves, they can be subjected to significant uncertainties. How large these uncertainties are and how they can impact the results of such studies is a topic of interest for researchers, practitioners, and decision-makers of water resources. The quantitative assessment of these uncertainties is important to obtain a more realistic description of many water resources related studies. River restoration in many areas is limited by data availability and funding. A means to assess the uncertainty of flow data to be used in the design and analysis of river restoration projects that is cost effective and has minimal data requirements would greatly improve the reliability of river restoration design. This paper proposes an assessment of how uncertainties related to rating curves and frequency analysis may affect the results of flood mapping in a real-world application to a small watershed with limited data. A Bayesian approach was performed to obtain the posterior distributions for the model parameters and the HEC-RAS (Hydrologic Engineering Center-River Analysis System) hydraulic model was used to propagate the uncertainties in the water surface elevation profiles. The analysis was conducted using freely available data and open source software, greatly reducing traditional analysis costs. The results demonstrate that for the study case the uncertainty related to the frequency analysis study impacted the water profiles more significantly than the uncertainty associated with the rating curve.

 Artículos similares

       
 
Manuel Nhangumbe, Andrea Nascetti and Yifang Ban    
Floods are one of the most frequent natural disasters worldwide. Although the vulnerability varies from region to region, all countries are susceptible to flooding. Mozambique was hit by several cyclones in the last few decades, and in 2019, after cyclon... ver más

 
Gaurav Parajuli, Shankar Neupane, Sandeep Kunwar, Ramesh Adhikari and Tri Dev Acharya    
Flood is one of the most frequently occurring and devastating disasters in Nepal. Several locations in Nepal are at high risk of flood, which requires proper guidance on early warning and safe evacuation of people to emergency locations through optimal r... ver más

 
Nikolaos Xafoulis, Yiannis Kontos, Evangelia Farsirotou, Spyridon Kotsopoulos, Konstantinos Perifanos, Nikolaos Alamanis, Dimitrios Dedousis and Konstantinos Katsifarakis    
Floods are lethal and destructive natural hazards. The Mediterranean, including Greece, has recently experienced many flood events (e.g., Medicanes Zorbas and Ianos), while climate change results in more frequent and intense flood events. Accurate flood ... ver más
Revista: Hydrology

 
Matthew Kelly, Imogen Schwarz, Mark Ziegelaar, Andrew B. Watkins and Yuriy Kuleshov    
Floods are the most common and costliest natural disaster in Australia. Australian flood risk assessments (FRAs) are mostly conducted on relatively small scales using modelling outputs. The aim of this study was to develop a novel approach of index-based... ver más
Revista: Hydrology

 
Wenzhao Li, Dongfeng Li and Zheng N. Fang    
Numerous algorithms have been developed to automate the process of delineating water surface maps for flood monitoring and mitigation purposes by using multiple sources such as satellite sensors and digital elevation model (DEM) data. To better understan... ver más
Revista: Hydrology