Redirigiendo al acceso original de articulo en 17 segundos...
Inicio  /  Computation  /  Vol: 11 Par: 8 (2023)  /  Artículo
ARTÍCULO
TITULO

Finite Element Analysis of ACL Reconstruction-Compatible Knee Implant Design with Bone Graft Component

Ferdinand Lauren F. Carpena and Lemmuel L. Tayo    

Resumen

Knee osteoarthritis is a musculoskeletal defect specific to the soft tissues in the knee joint and is a degenerative disease that affects millions of people. Although drug intake can slow down progression, total knee arthroplasty has been the gold standard for the treatment of this disease. This surgical procedure involves replacing the tibiofemoral joint with an implant. The most common implants used for this require the removal of either the anterior cruciate ligament (ACL) alone or both cruciate ligaments which alters the native knee joint mechanics. Bi-cruciate-retaining implants have been developed but not frequently used due to the complexity of the procedure and the occurrences of intraoperative failures such as ACL and tibial eminence rupture. In this study, a knee joint implant was modified to have a bone graft that should aid in ACL reconstruction. The mechanical behavior of the bone graft was studied through finite element analysis (FEA). The results show that the peak Christensen safety factor for cortical bone is 0.021 while the maximum shear stress of the cancellous bone is 3 MPa which signifies that the cancellous bone could fail when subjected to the ACL loads, depending on the graft shear strength which could vary depending on the graft source, while cortical bone could withstand the walking load. It would be necessary to optimize the bone graft geometry for stress distribution as well as to evaluate the effectiveness of bone healing prior to implementation.

 Artículos similares

       
 
George Tzoumakis, Konstantinos Fotopoulos and George Lampeas    
Future liquid hydrogen-powered aircraft requires the design and optimization of a large number of systems and subsystems, with cryogenic tanks being one of the largest and most critical. Considering previous space applications, these tanks are usually st... ver más
Revista: Aerospace

 
Grigorios Kostopoulos, Konstantinos Stamoulis, Vaios Lappas and Stelios K. Georgantzinos    
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how variou... ver más
Revista: Aerospace

 
Long Li, Yiming Peng, Yifeng Wang, Xiaohui Wei and Hong Nie    
Arresting gear systems play a vital role in carrier-based aircraft landing. In order to accurately understand the process of arresting hook and cable, this study introduces a parameter inversion method to model the arresting cable and applies it to the t... ver más
Revista: Aerospace

 
Mark A. Denisenko, Alina S. Isaeva, Alexander S. Sinyukin and Andrey V. Kovalev    
The fast, convenient, and accurate determination of railroad cars? load mass is critical to ensure safety and allow asset counting in railway infrastructure. In this paper, we propose a method for modeling the mechanical deformations that occur in the ra... ver más
Revista: Infrastructures

 
Litan Pan, Bo Wu, Daquan Wang, Xiongxiong Zhou, Lijie Wang and Yi Zhang    
In the numerical simulation of earth-rock dam, accurate and reliable mechanical parameters of the dam material are the important basis for dam deformation predictions and dam safety evaluations. Based on the deformation monitoring data of Luding core wal... ver más
Revista: Water