Resumen
This study explores the impact of rainfall on the followed-up landslides after a severe typhoon and the relationship between various rainfall events and the occurrence, scale, and regional characteristics of the landslides, including second landslides. Moreover, the influence of land disturbance was evaluated. The genetic adaptive neural network was used in combination with the texture analysis of the geographic information system for satellite image classification and interpretation to analyze land-use change and retrieve disaster records and surface information after five rainfall events from Typhoon Morakot (2009) to Typhoon Nanmadol (2011). The results revealed that except for extreme Morakot rains, the greater the degree of slope disturbance after rain, the larger the exposed slope. Extreme rainfall similar to Morakot strikes may have a greater impact on the bare land area than on slope disturbance. Moreover, the relationship between the bare land area and the index of land disturbance condition (ILDC) is positive, and the ratio of the bare land area to the quantity of bare land after each rainfall increases with the ILDC. With higher effective accumulative rainfall on the slope in the study area or greater slope disturbance, the landslide area at the second landslide point tended to increase.