Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Water  /  Vol: 13 Par: 12 (2021)  /  Artículo
ARTÍCULO
TITULO

Decision Support Model for Ecological Operation of Reservoirs Based on Dynamic Bayesian Network

Tao Zhou    
Zengchuan Dong    
Xiuxiu Chen and Qihua Ran    

Resumen

In this study, a model was proposed based on the sustainable boundary approach, to provide decision support for reservoir ecological operation with the dynamic Bayesian network. The proposed model was developed in four steps: (1) calculating and verifying the sustainable boundaries in combination with the ecological objectives of the study area, (2) generating the learning samples by establishing an optimal operation model and a Monte Carlo simulation model, (3) establishing and training a dynamic Bayesian network by learning the examples and (4) calculating the probability of the economic and ecological targets exceeding the set threshold from time to time with the trained dynamic Bayesian network model. Using the proposed model, the water drawing of the reservoir can be adjusted dynamically according to the probability of the economic and ecological targets exceeding the set threshold during reservoir operation. In this study, the proposed model was applied to the middle reaches of Heihe River, the effect of water supply proportion on the probability of the economic target exceeding the set threshold was analyzed, and the response of the reservoir water storage in each period to the probability of the target exceeding the set threshold was calculated. The results show that the risks can be analyzed with the proposed model. Compared with the existing studies, the proposed model provides guidance for the ecological operation of the reservoir from time to time and technical support for the formulation of reservoir operation chart. Compared with the operation model based on the designed guaranteed rate, the reservoir operation model based on uncertainty reduces the variation range of ecological flow shortage or the overflow rate and the economic loss rate by 5% and 6%, respectively. Thus, it can be seen that the decision support model based on the dynamic Bayesian network can effectively reduce the influence of water inflow and rainfall uncertainties on reservoir operation.

 Artículos similares

       
 
Olga Kurasova, Arnoldas Bud?ys and Viktor Medvedev    
As artificial intelligence has evolved, deep learning models have become important in extracting and interpreting complex patterns from raw multidimensional data. These models produce multidimensional embeddings that, while containing a lot of informatio... ver más
Revista: Informatics

 
Jing Ran and Zorica Nedovic-Budic    
Accessible geospatial data are crucial for informed decision making and policy development in urban planning, environmental governance, and hazard mitigation. Spatial data infrastructures (SDIs) have been implemented to facilitate such data access. Howev... ver más

 
Nikolaos T. Giannakopoulos, Marina C. Terzi, Damianos P. Sakas, Nikos Kanellos, Kanellos S. Toudas and Stavros P. Migkos    
Agriculture firms face an array of struggles, most of which are financial; thus, the role of decision making is discerned as highly important. The agroeconomic indexes (AEIs) of Agriculture Employment Rate (AER), Chemical Product Price Index (CPPI), Farm... ver más
Revista: Information

 
Nosa Aikodon, Sandra Ortega-Martorell and Ivan Olier    
Patients in Intensive Care Units (ICU) face the threat of decompensation, a rapid decline in health associated with a high risk of death. This study focuses on creating and evaluating machine learning (ML) models to predict decompensation risk in ICU pat... ver más
Revista: Algorithms

 
Shweta More, Moad Idrissi, Haitham Mahmoud and A. Taufiq Asyhari    
The rapid proliferation of new technologies such as Internet of Things (IoT), cloud computing, virtualization, and smart devices has led to a massive annual production of over 400 zettabytes of network traffic data. As a result, it is crucial for compani... ver más
Revista: Algorithms