Resumen
Time series data typically exhibit high dimensionality and complexity, necessitating the use of specific approximation methods to perform computations on the data. The currently employed compression methods suffer from varying degrees of feature loss, leading to potential distortions in similarity measurement results. Considering the aforementioned challenges and concerns, this paper proposes a double mean representation method, SAX-DM (Symbolic Aggregate Approximation Based on Double Mean Representation), for time series data, along with a similarity measurement approach based on SAX-DM. Addressing the trade-off between compression ratio and accuracy in the improved SAX representation, SAX-DM utilizes the segment mean and the segment trend distance to represent corresponding segments of time series data. This method reduces the dimensionality of the original sequences while preserving the original features and trend information of the time series data, resulting in a unified representation of time series segments. Experimental results demonstrate that, under the same compression ratio, SAX-DM combined with its similarity measurement method achieves higher expression accuracy, balanced compression rate, and accuracy, compared to SAX-TD and SAX-BD, in over 80% of the UCR Time Series dataset. This approach improves the efficiency and precision of similarity calculation.