Resumen
Because of technological advancements and their use in the medical area, many new methods and strategies have been developed to address complex real-life challenges. Breast cancer, a particular kind of tumor that arises in breast cells, is one of the most prevalent types of cancer in women and is. Early breast cancer detection and classification are crucial. Early detection considerably increases the likelihood of survival, which motivates us to contribute to different detection techniques from a technical standpoint. Additionally, manual detection requires a lot of time and effort and carries the risk of pathologist error and inaccurate classification. To address these problems, in this study, a hybrid deep learning model that enables decision making based on data from multiple data sources is proposed and used with two different classifiers. By incorporating multi-omics data (clinical data, gene expression data, and copy number alteration data) from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset, the accuracy of patient survival predictions is expected to be improved relative to prediction utilizing only one modality of data. A convolutional neural network (CNN) architecture is used for feature extraction. LSTM and GRU are used as classifiers. The accuracy achieved by LSTM is 97.0%, and that achieved by GRU is 97.5, while using decision fusion (LSTM and GRU) achieves the best accuracy of 98.0%. The prediction performance assessed using various performance indicators demonstrates that our model outperforms currently used methodologies.