Resumen
The combined effects of ocean warming and contaminants on marine ecosystems are poorly understood. In this study, we exposed model ecosystems comprising typical shallow coastal Baltic Sea communities to elevated temperature (+5 °C) and the flame retardant hexabromocyclododecane (HBCDD), both singly and in combination, for 13 days. Higher temperatures caused the release of PO4 from the sediment, which in turn stimulated the growth of the cyanobacteria Dolichospermum sp. This in turn led to an increase in the copepod Acartia bifilosa and other indirect effects in the plankton, interpreted as being caused by changes in predation, grazing, and competition. Elevated temperatures also stimulated benthic primary production and increased production of benthic mollusk larvae. Although increased temperature was the dominant driver of effects in these systems, HBCDD also appeared to have some effects, mainly in the zooplankton (both direct and indirect effects) and benthic meiofauna (an interactive effect with temperature). Although the study used model ecosystems, which are an approximation of field conditions, it highlights that interactive ecosystem effects between two stressors are possible and demonstrates the ecological and temporal complexity of such responses. Such unpredictable responses to warming and contaminants are a major challenge for ecosystem management to deal with multistressor situations in the Baltic Sea.