Redirigiendo al acceso original de articulo en 21 segundos...
Inicio  /  Water  /  Vol: 9 Par: 4 (2017)  /  Artículo
ARTÍCULO
TITULO

Numerical Simulation of Soil Evaporation with Sand Mulching and Inclusion

Wenju Zhao    
Ping Yu    
Xiaoyi Ma    
Jie Sheng and Changquan Zhou    

Resumen

A model of unsaturated soil-water movement using a prediction model of basic physical soil properties for calculating correlation functions was developed using VADOSE/W. The reliability of the model was assessed by comparing the results with those of a soil-column test. Coefficients of determination, R2, between the simulated and the measured daily evaporation for sand-mulch thicknesses of 0 (control, CK), 1.7, 3.6 and 5.7 cm were 0.8270, 0.8214, 0.8589 and 0.9851, respectively. R2, between the simulated and measured cumulative evaporation for mulch thicknesses of 0, 1.7, 3.6 and 5.7 cm were 0.9755, 0.9994, 0.9997 and 0.9983, respectively. The fits were, thus, good, verifying the reliability of the model. The program accurately predicted the distribution of cumulative evaporation and volumetric water content during evaporation from a soil column with mulch thicknesses of 1, 1.3, 1.5, 1.7, 2, 3, 5 cm and depths of sand inclusion thick of 0, 5, 10 and 15 cm for 20 days. Cumulative evaporation of sand inclusion was lower than in CK. Cumulative evaporation was independent of the mulch thickness and depended only on the depth of the inclusion: the deeper the inclusion, the higher the evaporation. The best mulch thickness was 5 cm, and the best inclusion depth was 5 cm. This study offers a new method to study the evaporation process with sand mulching and inclusion, which can provide guidance for improving the utilization efficiency of soil water.

 Artículos similares

       
 
Wenze Geng, Zhifei Song, Cheng He, Hongtao Wang and Xinyi Dong    
The type of soil and its compactness significantly influence its permeability coefficient, which in turn affects the drainage difficulty of soil pore water and the distribution of the infiltration line. However, current tailings dam models typically cons... ver más
Revista: Applied Sciences

 
Xin Zhang, Dongmin Yu, Kaifei Zhu, Aolai Zhao and Minghao Ren    
The pile-bucket composite foundation represents an innovative foundation form that surpasses the horizontal bearing performance of both single bucket-shaped foundations and pile foundations. The intricate interplay between piles and buckets introduces th... ver más
Revista: Applied Sciences

 
Chen Liu and Jianghai Li    
The South China Sea is in the convergence zone of the Pacific plate, the Indo-Australian plate, and the Eurasian plate. Its formation and tectonic evolution were influenced by continental margin spreading and plate interaction between the three plates an... ver más
Revista: Applied Sciences

 
Bikram Kesharee Patra, Rocio L. Segura and Ashutosh Bagchi    
This study addresses the vital issue of the variability associated with modeling decisions in dam seismic analysis. Traditionally, structural modeling and simulations employ a progressive approach, where more complex models are gradually incorporated. Fo... ver más
Revista: Infrastructures

 
Kaipeng Zhu, Kai Li, Yadong Ji, Xiaolong Li, Xuan Liu, Kaide Liu and Xuandong Chen    
The microscopic pore structure of sandstone determines its macroscopic permeability. Based on computer tomography (CT) technology, CT scans were performed on three different types of sandstone pore structures, namely coarse sandstone, medium sandstone, a... ver más
Revista: Water