Redirigiendo al acceso original de articulo en 21 segundos...
ARTÍCULO
TITULO

A Multi-Objective Optimization Method for Maritime Search and Rescue Resource Allocation: An Application to the South China Sea

Yaxin Dong    
Hongxiang Ren    
Yuzhu Zhu    
Rui Tao    
Yating Duan and Nianjun Shao    

Resumen

To effectively address the increase in maritime accidents and the challenges posed by the trend toward larger ships for maritime safety, it is crucial to rationally allocate the limited maritime search and rescue (MSAR) resources and enhance accident response capabilities. We present a comprehensive method for allocating MSAR resources, aiming to improve the overall efficiency of MSAR operations. First, we use long short-term memory to predict the number of future accidents and employ the K-medoids algorithm to identify the accident black spots in the studied area. Next, we analyze the multi-constraint conditions in the MSAR resource allocation process. A multi-objective integer programming model is constructed to minimize the response time and allocation cost. Finally, we use the non-dominated sorting genetic algorithm II (DNSGA-II) with Deb?s rules to solve the model, and we propose a multi-attribute decision optimization-based method for MSAR resource allocation. We found that the DNSGA-II exhibits better convergence and generates higher-quality solutions compared to the NSGA-II, particle swarm optimization (PSO), and enhanced particle swarm optimization (EPSO) algorithms. Compared with the existing MSAR resource emergency response system, the optimized scheme reduces the response time and allocation cost by 11.32% 11.32 % and 6.15% 6.15 % , respectively. The proposed method can offer decision makers new insights when formulating MSAR resource allocation plans.

 Artículos similares

       
 
Christoforos S. Rekatsinas, Dimitris K. Dimitriou and Nikolaos A. Chrysochoidis    
The present paper investigates the design process and the dimensioning of a tailless type-C composite sandwich unmanned aerial vehicle (UAV). The objective is to investigate an innovative aircraft configuration which exceeds the standard approach of ribs... ver más
Revista: Aerospace

 
Saile Zhang, Qingzhen Yang, Rui Wang and Xufei Wang    
The use of traditional optimization methods in engineering design problems, specifically in aerodynamic and infrared stealth optimization for engine nozzles, requires a large number of objective function evaluations, therefore introducing a considerable ... ver más
Revista: Aerospace

 
Meng Ma, Zhirong Zhong, Zhi Zhai and Ruobin Sun    
There are hundreds of various sensors used for online Prognosis and Health Management (PHM) of LREs. Inspired by the fact that a limited number of key sensors are selected for inflight control purposes in LRE, it is practical to optimal placement of redu... ver más
Revista: Aerospace

 
Yan Xu, Yilong Yang, He Huang, Gang Chen, Guangxing Li and Huajian Chen    
To improve the cushioning performance of soft-landing systems, a novel origami-inspired combined cushion airbag is proposed. The geometry size, initial pressure, and exhaust vent area of the cushion airbags are designed preliminarily using a theoretical ... ver más
Revista: Aerospace

 
Jianbo Liao, Shuang Li, Yihong Liu, Siyuan Mao, Tuo Tian, Xueyan Ma, Bing Li and Yong Qiu    
It is essential to reduce carbon emissions in wastewater treatment plants (WWTPs) to achieve carbon neutrality in society. However, current optimization of WWTPs prioritizes the operation cost index (OCI) and effluent quality index (EQI) over greenhouse ... ver más
Revista: Water