Resumen
Spawning grounds are important areas for fish survival and reproduction, and play a key role in the supplement of fishery resources. This study investigated environmental effects on the spatiotemporal variability of spawning ground in the Pearl River Estuary (PRE), China, using the generalized additive model (GAM), based on satellite remote sensing (sea surface temperature (SST), chlorophyll-a concentration (Chl-a), sea surface salinity (SSS), depth), and in situ observations. Results showed that 39.8% of the total variation in fish egg density was explained by these factors. Among them, the most important factor was SST, accounting for 14.3%, followed by Depth, SSS, and Chl-a, with contributions of 9.7%, 8.5%, and 7.3%, respectively. Spawning grounds in the PRE were mainly distributed in the waters with SST of 22 °C, depth of 30?50 m, SSS of 16?35 ?, and Chl-a of 6?15 mg/m3. From spring to summer, the spawning ground moved from the outlet of the PRE to the east. The distribution of the spawning ground in the PRE was mainly affected by the Pearl River Plume (PRP), Guangdong Coastal Current (GCC), and monsoons in this area.