Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 22 (2023)  /  Artículo
ARTÍCULO
TITULO

Noise-to-Norm Reconstruction for Industrial Anomaly Detection and Localization

Shiqi Deng    
Zhiyu Sun    
Ruiyan Zhuang and Jun Gong    

Resumen

Anomaly detection has a wide range of applications and is especially important in industrial quality inspection. Currently, many top-performing anomaly detection models rely on feature embedding-based methods. However, these methods do not perform well on datasets with large variations in object locations. Reconstruction-based methods use reconstruction errors to detect anomalies without considering positional differences between samples. In this study, a reconstruction-based method using the noise-to-norm paradigm is proposed, which avoids the invariant reconstruction of anomalous regions. Our reconstruction network is based on M-net and incorporates multiscale fusion and residual attention modules to enable end-to-end anomaly detection and localization. Experiments demonstrate that the method is effective in reconstructing anomalous regions into normal patterns and achieving accurate anomaly detection and localization. On the MPDD and VisA datasets, our proposed method achieved more competitive results than the latest methods, and it set a new state-of-the-art standard on the MPDD dataset.

 Artículos similares

       
 
George Papageorgiou, Vangelis Sarlis and Christos Tjortjis    
This study utilized advanced data mining and machine learning to examine player injuries in the National Basketball Association (NBA) from 2000?01 to 2022?23. By analyzing a dataset of 2296 players, including sociodemographics, injury records, and financ... ver más
Revista: Information

 
Juan Luis Pérez-Ruiz, Yu Tang, Igor Loboda and Luis Angel Miró-Zárate    
In the field of aircraft engine diagnostics, many advanced algorithms have been proposed over the last few years. However, there is still wide room for improvement, especially in the development of more integrated and complete engine health management sy... ver más
Revista: Aerospace

 
Urszula Libal and Pawel Biernacki    
An automatic honey bee classification system based on audio signals for tracking the frequency of workers and drones entering and leaving a hive.
Revista: Applied Sciences

 
Mohamed Shenify, Fokrul Alom Mazarbhuiya and A. S. Wungreiphi    
There are many applications of anomaly detection in the Internet of Things domain. IoT technology consists of a large number of interconnecting digital devices not only generating huge data continuously but also making real-time computations. Since IoT d... ver más
Revista: Applied Sciences

 
Woo-Hyun Choi and Jongwon Kim    
Industrial control systems (ICSs) play a crucial role in managing and monitoring critical processes across various industries, such as manufacturing, energy, and water treatment. The connection of equipment from various manufacturers, complex communicati... ver más