Resumen
Breaking waves generated by wave shoaling in coastal areas have a close relationship with various physical phenomena in coastal regions. Therefore, it is crucial to accurately predict breaker indexes such as breaking wave height and breaking depth when designing coastal structures. Many studies on wave breaking have been carried out, and many experimental data have been documented. Representative studies on wave breaking provide many empirical formulas for the prediction of breaking index, mainly through hydraulic model experiments. However, the existing empirical formulas for breaking index determine the coefficients of the assumed equation through statistical analysis of data under the assumption of a specific equation. This study presents an alternative method to estimate breaker index using representative linear-based supervised machine learning algorithms that show high predictive performance in various research fields related to regression or classification problems. Based on the used machine learning methods, a new simple linear equation for the prediction of breaker index is presented. The newly proposed breaker index formula showed similar predictive performance compared to the existing empirical formula, although it was a simple linear equation.