Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 14 (2019)  /  Artículo
ARTÍCULO
TITULO

Effects of Channel Outlet Configuration and Dimple/Protrusion Arrangement on the Blade Trailing Edge Cooling Performance

Qi Jing    
Yonghui Xie and Di Zhang    

Resumen

The trailing edge regions of high-temperature gas turbine blades are subjected to extremely high thermal loads and are affected by the external wake flow during operation, thus creating great challenges in internal cooling design. With the development of cooling technology, the dimple and protrusion have attracted wide attention for its excellent performance in heat transfer enhancement and flow resistance reduction. Based on the typical internal cooling structure of the turbine blade trailing edge, trapezoidal cooling channels with lateral extraction slots are modeled in this paper. Five channel outlet configurations, i.e., no second passage (OC1), radially inward flow second passage (OC2), radially outward flow second passage (OC3), top region outflow (OC4), both sides extractions (OC5), and three dimple/protrusion arrangements (all dimple, all protrusion, dimple?protrusion staggered arrangement) are considered. Numerical investigations are carried out, within the Re range of 10,000?100,000, to analyze the flow structures, heat transfer distributions, average heat transfer and friction characteristics and overall thermal performances in detail. The results show that the OC4 and OC5 cases have high heat transfer levels in general, while the heat transfer deterioration occurs in the OC1, OC2, and OC3 cases. For different dimple/protrusion arrangements, the protrusion case produces the best overall thermal performance. In conclusion, for the design of trailing edge cooling structures with lateral slots, the outlet configurations of top region outflow and both sides extractions, and the all protrusion arrangement, are recommended.

 Artículos similares

       
 
Yi Zhu, Jianqi Zhuang and Yong Zhao    
The problems of gully and soil erosion caused by large-scale urban construction and agricultural development in China have become more and more serious in recent years. In an effort to solve this problem, a series of gully stabilization and highland prot... ver más
Revista: Applied Sciences

 
Ryan Good, David Nguyen, Hossein Bonakdari, Andrew Binns and Bahram Gharabaghi    
Predicting morphological adjustments in alluvial meandering streams remains a challenging task due to the complex nature of the governing inter-related dynamic flow and sediment transport processes. This difficulty is increased in streams with irregular ... ver más
Revista: Water

 
Lei Jiang and Ziyue Zeng    
Since the impoundment of the Three Gorges Project, the downstream hydrology and river dynamics have been modified. The Yichang?Chenglingji Reach (YCR), as a part of the mainstream of the Middle Yangtze River, has consequently been significantly scoured, ... ver más
Revista: Water

 
Morag Hunter, D. H. Nimalika Perera, Eustace P. G. Barnes, Hugo V. Lepage, Elias Escobedo-Pacheco, Noorhayati Idros, David Arvidsson-Shukur, Peter J. Newton, Luis de los Santos Valladares, Patrick A. Byrne and Crispin H. W. Barnes    
The expansion of copper mining on the hyper-arid pacific slope of Southern Peru has precipitated growing concern for scarce water resources in the region. Located in the headwaters of the Torata river, in the department of Moquegua, the Cuajone mine, own... ver más
Revista: Water

 
Shees Ur Rehman, Afzal Ahmed, Gordon Gilja, Manousos Valyrakis, Abdul Razzaq Ghumman, Ghufran Ahmed Pasha and Rashid Farooq    
Nature-based solutions (NBSs) always provide optimal opportunities for researchers and policymakers to develop sustainable and long-term solutions for mitigating the impacts of flooding. Computing the hydrological process in hilly areas is complex compar... ver más
Revista: Water