Redirigiendo al acceso original de articulo en 22 segundos...
ARTÍCULO
TITULO

Machine Learning-Based Identifications of COVID-19 Fake News Using Biomedical Information Extraction

Faizi Fifita    
Jordan Smith    
Melissa B. Hanzsek-Brill    
Xiaoyin Li and Mengshi Zhou    

Resumen

The spread of fake news related to COVID-19 is an infodemic that leads to a public health crisis. Therefore, detecting fake news is crucial for an effective management of the COVID-19 pandemic response. Studies have shown that machine learning models can detect COVID-19 fake news based on the content of news articles. However, the use of biomedical information, which is often featured in COVID-19 news, has not been explored in the development of these models. We present a novel approach for predicting COVID-19 fake news by leveraging biomedical information extraction (BioIE) in combination with machine learning models. We analyzed 1164 COVID-19 news articles and used advanced BioIE algorithms to extract 158 novel features. These features were then used to train 15 machine learning classifiers to predict COVID-19 fake news. Among the 15 classifiers, the random forest model achieved the best performance with an area under the ROC curve (AUC) of 0.882, which is 12.36% to 31.05% higher compared to models trained on traditional features. Furthermore, incorporating BioIE-based features improved the performance of a state-of-the-art multi-modality model (AUC 0.914 vs. 0.887). Our study suggests that incorporating biomedical information into fake news detection models improves their performance, and thus could be a valuable tool in the fight against the COVID-19 infodemic.

 Artículos similares

       
 
Cai Wu, Yanwen Wang, Jiong Wang, Menno-Jan Kraak and Mingshu Wang    
This study introduces a machine learning-based framework for mapping street patterns in urban morphology, offering an objective, scalable approach that transcends traditional methodologies. Focusing on six diverse cities, the research employed supervised... ver más

 
Hassan Khazane, Mohammed Ridouani, Fatima Salahdine and Naima Kaabouch    
With the rapid advancements and notable achievements across various application domains, Machine Learning (ML) has become a vital element within the Internet of Things (IoT) ecosystem. Among these use cases is IoT security, where numerous systems are dep... ver más
Revista: Future Internet

 
Minghao Liu, Jianxiang Wang, Qingxi Luo, Lingbo Sun and Enming Wang    
Exploring spatial anisotropy features and capturing spatial interactions during urban change simulation is of great significance to enhance the effectiveness of dynamic urban modeling and improve simulation accuracy. Addressing the inadequacies of curren... ver más

 
Mohammed Suleiman Mohammed Rudwan and Jean Vincent Fonou-Dombeu    
Ontology merging is an important task in ontology engineering to date. However, despite the efforts devoted to ontology merging, the incorporation of relevant features of ontologies such as axioms, individuals and annotations in the output ontologies rem... ver más

 
Eleni-Ioanna Koutsovili, Ourania Tzoraki, Nicolaos Theodossiou and George E. Tsekouras    
The occurrence of flash floods in urban catchments within the Mediterranean climate zone has witnessed a substantial rise due to climate change, underscoring the urgent need for early-warning systems. This paper examines the implementation of an early fl... ver más