Redirigiendo al acceso original de articulo en 24 segundos...
ARTÍCULO
TITULO

A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder

Fatemeh Noori    
Hamid Kamangir    
Scott A. King    
Alaa Sheta    
Mohammad Pashaei and Abbas SheikhMohammadZadeh    

Resumen

In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators? policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street?s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.

 Artículos similares

       
 
Yongen Lin, Dagang Wang, Tao Jiang and Aiqing Kang    
Reliable streamflow forecasting is a determining factor for water resource planning and flood control. To better understand the strengths and weaknesses of newly proposed methods in streamflow forecasting and facilitate comparisons of different research ... ver más
Revista: Water

 
Ulzhan Bissarinova, Aidana Tleuken, Sofiya Alimukhambetova, Huseyin Atakan Varol and Ferhat Karaca    
This paper introduces a deep learning (DL) tool capable of classifying cities and revealing the features that characterize each city from a visual perspective. The study utilizes city view data captured from satellites and employs a methodology involving... ver más
Revista: Buildings

 
Boris Stanoev, Goran Mitrov, Andrea Kulakov, Georgina Mirceva, Petre Lameski and Eftim Zdravevski    
With the exponential growth of data, extracting actionable insights becomes resource-intensive. In many organizations, normalized relational databases store a significant portion of this data, where tables are interconnected through some relations. This ... ver más

 
Hanan M. Alghamdi    
Sentiment analysis plays a crucial role in understanding public opinion and social media trends. It involves analyzing the emotional tone and polarity of a given text. When applied to Arabic text, this task becomes particularly challenging due to the lan... ver más

 
Reenu Mohandas, Mark Southern, Eoin O?Connell and Martin Hayes    
Deep learning based visual cognition has greatly improved the accuracy of defect detection, reducing processing times and increasing product throughput across a variety of manufacturing use cases. There is however a continuing need for rigorous procedure... ver más