Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

A Deep Learning Approach to Urban Street Functionality Prediction Based on Centrality Measures and Stacked Denoising Autoencoder

Fatemeh Noori    
Hamid Kamangir    
Scott A. King    
Alaa Sheta    
Mohammad Pashaei and Abbas SheikhMohammadZadeh    

Resumen

In urban planning and transportation management, the centrality characteristics of urban streets are vital measures to consider. Centrality can help in understanding the structural properties of dense traffic networks that affect both human life and activity in cities. Many cities classify urban streets to provide stakeholders with a group of street guidelines for possible new rehabilitation such as sidewalks, curbs, and setbacks. Transportation research always considers street networks as a connection between different urban areas. The street functionality classification defines the role of each element of the urban street network (USN). Some potential factors such as land use mix, accessible service, design goal, and administrators? policies can affect the movement pattern of urban travelers. In this study, nine centrality measures are used to classify the urban roads in four cities evaluating the structural importance of street segments. In our work, a Stacked Denoising Autoencoder (SDAE) predicts a street?s functionality, then logistic regression is used as a classifier. Our proposed classifier can differentiate between four different classes adopted from the U.S. Department of Transportation (USDT): principal arterial road, minor arterial road, collector road, and local road. The SDAE-based model showed that regular grid configurations with repeated patterns are more influential in forming the functionality of road networks compared to those with less regularity in their spatial structure.

 Artículos similares

       
 
Hanan M. Alghamdi    
Sentiment analysis plays a crucial role in understanding public opinion and social media trends. It involves analyzing the emotional tone and polarity of a given text. When applied to Arabic text, this task becomes particularly challenging due to the lan... ver más

 
Reenu Mohandas, Mark Southern, Eoin O?Connell and Martin Hayes    
Deep learning based visual cognition has greatly improved the accuracy of defect detection, reducing processing times and increasing product throughput across a variety of manufacturing use cases. There is however a continuing need for rigorous procedure... ver más

 
Feng Zhou, Shijing Hu, Xin Du, Xiaoli Wan and Jie Wu    
In the current field of disease risk prediction research, there are many methods of using servers for centralized computing to train and infer prediction models. However, this centralized computing method increases storage space, the load on network band... ver más
Revista: Future Internet

 
Konstantinos Psychogyios, Andreas Papadakis, Stavroula Bourou, Nikolaos Nikolaou, Apostolos Maniatis and Theodore Zahariadis    
The advent of computer networks and the internet has drastically altered the means by which we share information and interact with each other. However, this technological advancement has also created opportunities for malevolent behavior, with individual... ver más
Revista: Future Internet

 
Javid Misirli and Emiliano Casalicchio    
The Internet of Things (IoT) uptake brought a paradigm shift in application deployment. Indeed, IoT applications are not centralized in cloud data centers, but the computation and storage are moved close to the consumers, creating a computing continuum b... ver más
Revista: Future Internet