Resumen
Streamflow simulation gives the major information on water systems to water resources planning and management. The monthly river flows in dry season often exhibit high autocorrelation. The headwater catchment of the Yellow River basin monthly flow series in dry season exhibits this clearly. However, existing models usually fail to capture the high-dimensional, nonlinear dependence. To address this issue, a stochastic model is developed using canonical vine copulas in combination with nonlinear correlation coefficients. Kendall?s tau values of different pairs of river flows are calculated to measure the mutual correlations so as to select correlated streamflows for every month. Canonical vine copula is used to capture the temporal dependence of every month with its correlated streamflows. Finally, monthly river flow by the conditional joint distribution functions conditioned upon the corresponding river flow records was generated. The model was applied to the simulation of monthly river flows in dry season at Tangnaihai station, which controls the streamflow of headwater catchment of Yellow River basin in the north of China. The results of the proposed method possess a smaller mean absolute error (MAE) than the widely-used seasonal autoregressive integrated moving average model. The performance test on seasonal distribution further verifies the great capacity of the stochastic-statistical method.