Redirigiendo al acceso original de articulo en 20 segundos...
ARTÍCULO
TITULO

Spatial parameters for transportation: A multi-modal approach for modelling the urban spatial structure using deep learning and remote sensing

Dorothee Stiller    
Michael Wurm    
Thomas Stark    
Pablo d'Angelo    
Karsten Stebner    
Stefan Dech    
Hannes Taubenböck    

Resumen

A significant increase in global urban population affects the efficiency of urban transportation systems. Remarkable urban growth rates are observed in developing or newly industrialized countries where researchers, planners, and authorities face scarcity of relevant official data or geo-data. In this study, we explore remote sensing and open geo-data as alternative sources to generate missing data for transportation models in urban planning and research. We propose a multi-modal approach capable of assessing three essential parameters of the urban spatial structure: buildings, land use, and intra-urban population distribution. Therefore, we first create a very high-resolution (VHR) 3D city model for estimating the building floors. Second, we add detailed land-use information retrieved from OpenStreetMap (OSM). Third, we test and evaluate five experiments to estimate population at a single building level. In our experimental set-up for the mega-city of Santiago de Chile, we find that the multi-modal approach allows generating missing data for transportation independently from official data for any area across the globe. Beyond that, we find the high-level 3D city model is the most accurate for determining population on small scales, and thus evaluate that the integration of land use is an inevitable step to obtain fine-scale intra-urban population distribution.

 Artículos similares

       
 
Shuting Xu and Jinming Xu    
The construction of deep foundation pits in subway stations can affect the settlement of existing buildings adjacent to the pits to varying degrees. In this paper, the Long Short-Term Memory neural network prediction model of building settlement caused b... ver más
Revista: Applied Sciences

 
Yuncheng Jiang, Bin Ouyang and Zhigang Yan    
Clarifying the spatiotemporal changes in the supply and demand of water-related ecosystem services (WESs) can provide comprehensive support information for ecological governance decisions. However, the spatial mismatch between the supply and demand of WE... ver más

 
Christos Tzimopoulos, Kyriakos Papadopoulos, Nikiforos Samarinas, Basil Papadopoulos and Christos Evangelides    
In this work, a novel fuzzy FEM (Finite Elements Method) numerical solution describing the recession flow in unconfined aquifers is proposed. In general, recession flow and drainage problems can be described by the nonlinear Boussinesq equation, while th... ver más
Revista: Hydrology

 
Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang    
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the wate... ver más
Revista: Water

 
Bomi Kim, Garim Lee, Yaewon Lee, Sohyun Kim and Seong Jin Noh    
In this study, we analyzed the impact of model spatial resolution on streamflow predictions, focusing on high-resolution scenarios (<1 km) and flooding conditions at catchment scale. Simulation experiments were implemented for the Geumho River catchment ... ver más
Revista: Water