Resumen
The hydrodynamic investigation of a hull?s performance is a key aspect when designing a new prototype, especially when it comes to a competitive/racing environment. This paper purports to perform a fully nonlinear unsteady Reynolds Averaged Navier-Stokes (RANS) simulation to predict the motion and hydrodynamic resistance of a sailboat, thus creating a reliable tool for designing a new hull or refining the design of an existing one. A comprehensive range of speeds is explored, and results are validated with hydrodynamic full-scale tests, conducted in the towing tank facility at University of Naples Federico II, Italy. In particular, this work deals with numerical ventilation, which is a typical issue occurring when modeling a hull; a simple and effective solution is here proposed and investigated, based on the phase-interaction substitution procedure. Results of the computational fluid dynamic (CFD) campaign agree with the experimental fluid dynamic (EFD) within a 2% margin.