Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Effect of Time and Voltage on the Electrophoresis Deposition of Zinc Oxide Thin Films for Photovoltaic Applications

Vanja Fontenele Nunes    
Manuel Pedro Fernandes Graça    
Imen Hammami    
Ana Fabíola Leite Almeida and Francisco Nivaldo Aguiar Freire    

Resumen

Electrophoretic deposition is a straightforward, environmentally friendly, and cost-effective technique for depositing and synthesizing nanomaterials, particularly nanofilms of semiconductors. Key parameters in electrophoresis include deposition time and voltage. Zinc oxide, a semiconductor of significant interest in solar energy research, possesses favorable characteristics, notably, a band gap value of approximately 3.33 eV. In the realm of dye-sensitized solar cells, which represent the third generation of solar cells, zinc oxide has emerged as a compelling choice for a photoanode. This study focused on depositing thin films of zinc oxide through electrophoresis and applying them as photoanodes in dye solar cells. The results demonstrated that the electrodeposited films exhibited good reflectance in the visible spectrum (~60?90%), a band gap energy of 3.28 eV, and an incident photon conversion efficiency of approximately 4.48% for the electrodeposited film at 80 V for 5 min.