Resumen
The pressure distribution of a misaligned elastomeric journal bearing is crucial for analyzing the uneven excessive wearing of the propulsion shaft bearing. However, analysis of the misaligned bearing is usually mainly based on the finite element method (FEM), which lacks a convenient and effective calculation method. This paper uses the influence coefficient factors (ICs) method to analyze the contact pressure of the misaligned bearing. First, the elastic displacement of the cylindrical shell subjected to a single point of concentrated force is derived and used to attain the new influence coefficient factors. Then, the geometric boundary conditions of planar conformal cylindrical contact are extended to the case of non-planar contact. Finally, the proposed method is applied and compared with other methods. The results show that the influence coefficient factors are greatly affected by the shape and constraints of the contact object. The proposed method is suitable for cylindrical shell contact analysis and has the same accuracy as FEM with half of the time consumption. In addition, the bearing capacity and contact stiffness are decreased as the effective contact area decreases due to misalignment.