Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Buildings  /  Vol: 14 Par: 3 (2024)  /  Artículo
ARTÍCULO
TITULO

Research on Prediction of EPB Shield Tunneling Parameters Based on LGBM

Wei Wang    
Huanhuan Feng    
Yanzong Li    
Quanwei You and Xu Zhou    

Resumen

At present, the determination of tunnel parameters mainly rely on engineering experience and human judgment, which leads to the subjective decision of parameters and an increased construction risk. Machine learning algorithms could provide an objective theoretical basis for tunnel parameter decision making. However, due to the limitations of a machine learning model?s performance and parameter selection methods, the prediction model had poor prediction results and low reliability for parameter research. To solve the above problems, based on a large number of construction parameters of a composite section subway in Shenzhen, this paper combined dimensionality reduction data with service analysis to optimize the selection process of shield tunneling parameters, and determined the total propulsion force, cutter head torque, cutter head speed, and advance rate as key tunneling parameters. Based on an LGBM algorithm and Bayesian optimization, the prediction model of key tunneling parameters of an earth pressure balance shield was established. The results showed that the average error of the LGBM model on the test set was 8.18%, the average error of the cutter head torque was 13.93%, the average error of the cutter head speed was 3.16%, and the average error of advance rate was 13.35%. Compared with the RF model, the prediction effect and the generalization on the test set were better. Therefore, an LGBM algorithm could be used as an effective prediction method for tunneling parameters in tunnel construction and provide guidance for the setting of tunneling parameters.

 Artículos similares

       
 
Binita Kusum Dhamala, Babu R. Dawadi, Pietro Manzoni and Baikuntha Kumar Acharya    
Graph representation is recognized as an efficient method for modeling networks, precisely illustrating intricate, dynamic interactions within various entities of networks by representing entities as nodes and their relationships as edges. Leveraging the... ver más
Revista: Future Internet

 
Jingtao Sun, Jin Qi, Zhen Yan, Yadong Li, Jie Liang and Sensen Wu    
The COVID-19 pandemic has had a profound impact on people?s lives, making accurate prediction of epidemic trends a central focus in COVID-19 research. This study innovatively utilizes a spatiotemporal heterogeneity analysis (GTNNWR) model to predict COVI... ver más

 
Ahmed Skhiri, Ali Ferhi, Anis Bousselmi, Slaheddine Khlifi and Mohamed A. Mattar    
A correct determination of irrigation water requirements necessitates an adequate estimation of reference evapotranspiration (ETo). In this study, monthly ETo is estimated using artificial neural network (ANN) models. Eleven combinations of long-term ave... ver más
Revista: Water

 
Naseer Muhammad Khan, Liqiang Ma, Muhammad Zaka Emad, Tariq Feroze, Qiangqiang Gao, Saad S. Alarifi, Li Sun, Sajjad Hussain and Hui Wang    
The brittleness index is one of the most integral parameters used in assessing rock bursts and catastrophic rock failures resulting from deep underground mining activities. Accurately predicting this parameter is crucial for effectively monitoring rock b... ver más
Revista: Water

 
Shuai Lu, Haibo Chen and Yilong Teng    
Traffic flow prediction is a crucial research area in traffic management. Accurately predicting traffic flow in each area of the city over the long term can enable city managers to make informed decisions regarding the allocation of urban transportation ... ver más