Redirigiendo al acceso original de articulo en 19 segundos...
ARTÍCULO
TITULO

Unveiling Sentiments: A Comprehensive Analysis of Arabic Hajj-Related Tweets from 2017?2022 Utilizing Advanced AI Models

Hanan M. Alghamdi    

Resumen

Sentiment analysis plays a crucial role in understanding public opinion and social media trends. It involves analyzing the emotional tone and polarity of a given text. When applied to Arabic text, this task becomes particularly challenging due to the language?s complex morphology, right-to-left script, and intricate nuances in expressing emotions. Social media has emerged as a powerful platform for individuals to express their sentiments, especially regarding religious and cultural events. Consequently, studying sentiment analysis in the context of Hajj has become a captivating subject. This research paper presents a comprehensive sentiment analysis of tweets discussing the annual Hajj pilgrimage over a six-year period. By employing a combination of machine learning and deep learning models, this study successfully conducted sentiment analysis on a sizable dataset consisting of Arabic tweets. The process involves pre-processing, feature extraction, and sentiment classification. The objective was to uncover the prevailing sentiments associated with Hajj over different years, before, during, and after each Hajj event. Importantly, the results presented in this study highlight that BERT, an advanced transformer-based model, outperformed other models in accurately classifying sentiment. This underscores its effectiveness in capturing the complexities inherent in Arabic text.

 Artículos similares

       
 
Barbara Cardone, Ferdinando Di Martino and Vittorio Miraglia    
The application of sentiment analysis approaches to information flows extracted from the social networks connected to particular critical periods generated by pandemic, climatic and extreme environmental phenomena allow the decision maker to detect the e... ver más
Revista: Urban Science

 
Shuang Lu, Jianyun Huang and Jing Wu    
In the contexts of global climate change and the urbanization process, urban flooding poses significant challenges worldwide, necessitating effective rapid assessments to understand its impacts on various aspects of urban systems. This can be achieved th... ver más
Revista: Water

 
Markus Frohmann, Manuel Karner, Said Khudoyan, Robert Wagner and Markus Schedl    
Recently, various methods to predict the future price of financial assets have emerged. One promising approach is to combine the historic price with sentiment scores derived via sentiment analysis techniques. In this article, we focus on predicting the f... ver más

 
Nirmalya Thakur    
Mining and analysis of the big data of Twitter conversations have been of significant interest to the scientific community in the fields of healthcare, epidemiology, big data, data science, computer science, and their related areas, as can be seen from s... ver más

 
Alireza Alaei, Ying Wang, Vinh Bui and Bela Stantic    
Social media have been a valuable data source for studying people?s opinions, intentions, and behaviours. Such a data source incorporating advanced big data analysis methods, such as machine-operated emotion and sentiment analysis, will open unprecedente... ver más
Revista: Future Internet