Redirigiendo al acceso original de articulo en 18 segundos...
Inicio  /  Applied Sciences  /  Vol: 9 Par: 20 (2019)  /  Artículo
ARTÍCULO
TITULO

End-To-End Controls Using K-Means Algorithm for 360-Degree Video Control Method on Omnidirectional Camera-Equipped Autonomous Micro Unmanned Aircraft Systems

Jeonghoon Kwak and Yunsick Sung    

Resumen

Micro unmanned aircraft systems (micro UAS)-related technical research is important because micro UAS has the advantage of being able to perform missions remotely. When an omnidirectional camera is mounted, it captures all surrounding areas of the micro UAS. Normal field of view (NFoV) refers to a view presented as an image to a user in a 360-degree video. The 360-degree video is controlled using an end-to-end controls method to automatically provide the user with NFoVs without the user controlling the 360-degree video. When using the end-to-end controls method that controls 360-degree video, if there are various signals that control the 360-degree video, the training of the deep learning model requires a considerable amount of training data. Therefore, there is a need for a method of autonomously determining the signals to reduce the number of signals for controlling the 360-degree video. This paper proposes a method to autonomously determine the output to be used for end-to-end control-based deep learning model to control 360-degree video for micro UAS controllers. The output of the deep learning model to control 360-degree video is automatically determined using the K-means algorithm. Using a trained deep learning model, the user is presented with NFoVs in a 360-degree video. The proposed method was experimentally verified by providing NFoVs wherein the signals that control the 360-degree video were set by the proposed method and by user definition. The results of training the convolution neural network (CNN) model using the signals to provide NFoVs were compared, and the proposed method provided NFoVs similar to NFoVs of existing user with 24.4% more similarity compared to a user-defined approach.

 Artículos similares

       
 
David Wheeler, Lillian Brancalion, Akitomo Kawasaki and Meaghan L. Rourke    
The analysis of environmental DNA (eDNA) is a powerful and non-invasive method for monitoring the presence of species in ecosystems. However, ecologists and laboratory staff can find it challenging to use eDNA analysis software effectively due to the unf... ver más
Revista: Applied Sciences

 
Luís P. N. Mendes, Ana M. C. Ricardo, Alexandre J. M. Bernardino and Rui M. L. Ferreira    
We present novel velocimetry algorithms based on the hybridization of correlation-based Particle Image Velocimetry (PIV) and a combination of Lucas?Kanade and Liu?Shen optical flow (OpF) methods. An efficient Aparapi/OpenCL implementation of those method... ver más
Revista: Water

 
Abderrazzaq Kharroubi, Zouhair Ballouch, Rafika Hajji, Anass Yarroudh and Roland Billen    
Railway scene understanding is crucial for various applications, including autonomous trains, digital twining, and infrastructure change monitoring. However, the development of the latter is constrained by the lack of annotated datasets and limitations o... ver más
Revista: Infrastructures

 
Yu Dai, Jiaming Fu, Zhen Gao and Lei Yang    
Due to CPU and memory limitations, mobile IoT devices face challenges in handling delay-sensitive and computationally intensive tasks. Mobile edge computing addresses this issue by offloading tasks to the wireless network edge, reducing latency and energ... ver más
Revista: Applied Sciences

 
Tuan Phong Tran, Anh Hung Ngoc Tran, Thuan Minh Nguyen and Myungsik Yoo    
Multi-access edge computing (MEC) brings computations closer to mobile users, thereby decreasing service latency and providing location-aware services. Nevertheless, given the constrained resources of the MEC server, it is crucial to provide a limited nu... ver más
Revista: Applied Sciences