Redirigiendo al acceso original de articulo en 23 segundos...
Inicio  /  Algorithms  /  Vol: 15 Par: 8 (2022)  /  Artículo
ARTÍCULO
TITULO

A Neural Network Approach for the Analysis of Reproducible Ribo?Seq Profiles

Giorgia Giacomini    
Caterina Graziani    
Veronica Lachi    
Pietro Bongini    
Niccolò Pancino    
Monica Bianchini    
Davide Chiarugi    
Angelo Valleriani and Paolo Andreini    

Resumen

In recent years, the Ribosome profiling technique (Ribo?seq) has emerged as a powerful method for globally monitoring the translation process in vivo at single nucleotide resolution. Based on deep sequencing of mRNA fragments, Ribo?seq allows to obtain profiles that reflect the time spent by ribosomes in translating each part of an open reading frame. Unfortunately, the profiles produced by this method can vary significantly in different experimental setups, being characterized by a poor reproducibility. To address this problem, we have employed a statistical method for the identification of highly reproducible Ribo?seq profiles, which was tested on a set of E. coli genes. State-of-the-art artificial neural network models have been used to validate the quality of the produced sequences. Moreover, new insights into the dynamics of ribosome translation have been provided through a statistical analysis on the obtained sequences.

 Artículos similares

       
 
Zengyu Cai, Chunchen Tan, Jianwei Zhang, Liang Zhu and Yuan Feng    
As network technology continues to develop, the popularity of various intelligent terminals has accelerated, leading to a rapid growth in the scale of wireless network traffic. This growth has resulted in significant pressure on resource consumption and ... ver más
Revista: Applied Sciences

 
Ku Muhammad Naim Ku Khalif, Woo Chaw Seng, Alexander Gegov, Ahmad Syafadhli Abu Bakar and Nur Adibah Shahrul    
Convolutional Neural Networks (CNNs) have garnered significant utilisation within automated image classification systems. CNNs possess the ability to leverage the spatial and temporal correlations inherent in a dataset. This study delves into the use of ... ver más
Revista: Information

 
Zeyu Xu, Wenbin Yu, Chengjun Zhang and Yadang Chen    
In the era of noisy intermediate-scale quantum (NISQ) computing, the synergistic collaboration between quantum and classical computing models has emerged as a promising solution for tackling complex computational challenges. Long short-term memory (LSTM)... ver más
Revista: Information

 
Gulsum Alicioglu and Bo Sun    
Deep learning (DL) models have achieved state-of-the-art performance in many domains. The interpretation of their working mechanisms and decision-making process is essential because of their complex structure and black-box nature, especially for sensitiv... ver más
Revista: AI

 
Ramez M. Elmasry, Mohamed A. Abd El Ghany, Mohammed A.-M. Salem and Omar M. Fahmy    
Human behavior is regarded as one of the most complex notions present nowadays, due to the large magnitude of possibilities. These behaviors and actions can be distinguished as normal and abnormal. However, abnormal behavior is a vast spectrum, so in thi... ver más
Revista: AI