Resumen
To resolve the issues of the high porous medium flow resistance, low oil production rate, high oil decline rate, and low oil recovery factor for the cyclic steam stimulation (CSS) of horizontal wells in heavy oil reservoirs, the CSS method assisted by the electric heating (E-CSS) of horizontal wells was proposed in this study. Combining the heat from electric heating and steam during E-CSS, the analytical model of formation temperature rise was established for the three phases of electric-assisted CSS (i.e., injection, soaking, production), and physical experiments were carried out to compare the performance of conventional CSS and E-CSS. The experimental results were used to validate the analytical model and reveal the impact of the key electric heating mechanism on the horizontal CSS performance. Meanwhile, the typical well model was used to forecast the E-CSS potential. The results indicate that electric heating can achieve uniform heating in the steam injection phase, maintain heating around the wellbore in the soak phase, and reduce flow resistance and enhance oil output in the production phase. Forecasts of the typical well model indicate that electric heating can enhance the oil recovery factor by 9.4% and the oil-steam ratio from 0.14 to 0.23, implying a significant application potential in heavy oil reservoirs developed by horizontal CSS.