Resumen
3D urban building models, which provide 3D information services for urban planning, management and operational decision-making, are essential for constructing digital cities. Unfortunately, the existing reconstruction approaches for LoD3 building models are insufficient in model details and are associated with a heavy workload, and accordingly they could not satisfy urgent requirements of realistic applications. In this paper, we propose an accurate LoD3 building reconstruction method by integrating multi-source laser point clouds and oblique remote sensing imagery. By combing high-precision plane features extracted from point clouds and accurate boundary constraint features from oblique images, the building mainframe model, which provides an accurate reference for further editing, is quickly and automatically constructed. Experimental results show that the proposed reconstruction method outperforms existing manual and automatic reconstruction methods using both point clouds and oblique images in terms of reconstruction efficiency and spatial accuracy.