Redirigiendo al acceso original de articulo en 17 segundos...
ARTÍCULO
TITULO

Robust Classification Method for Underwater Targets Using the Chaotic Features of the Flow Field

Xinghua Lin    
Jianguo Wu and Qing Qin    

Resumen

Fish can sense their surrounding environment by their lateral line system (LLS). In order to understand the extent to which information can be derived via LLS and to improve the adaptive ability of autonomous underwater vehicles (AUVs), a novel strategy is presented, which directly uses the information of the flow field to distinguish the object obstacle. The flow fields around different targets are obtained by the numerical method, and the pressure signal on the virtual lateral line is studied based on the chaos theory and fast Fourier transform (FFT). The compounded parametric features, including the chaotic features (CF) and the power spectrum density (PSD), which is named CF-PSD, are used to recognize the kinds of obstacles. During the research of CF, the largest Lyapunov exponent (LLE), saturated correlation dimension (SCD), and Kolmogorov entropy (KE) are taken into account, and PSD features include the number, amplitude, and position of wave crests. A two-step support vector machine (SVM) is built and used to classify the shapes and incidence angles based on the CF-PSD. It is demonstrated that the flow fields around triangular and square targets are chaotic systems, and the new findings indicate that the object obstacle can be recognized directly based on the information of the flow field, and the consideration of a parametric feature extraction method (CF-PSD) results in considerably higher classification success.

 Artículos similares

       
 
Nikola Andelic and Sandi Baressi ?egota    
This investigation underscores the paramount imperative of discerning network intrusions as a pivotal measure to fortify digital systems and shield sensitive data from unauthorized access, manipulation, and potential compromise. The principal aim of this... ver más
Revista: Information

 
Norah Fahd Alhussainan, Belgacem Ben Youssef and Mohamed Maher Ben Ismail    
Brain tumor diagnosis traditionally relies on the manual examination of magnetic resonance images (MRIs), a process that is prone to human error and is also time consuming. Recent advancements leverage machine learning models to categorize tumors, such a... ver más
Revista: Computation

 
Thomas Kopalidis, Vassilios Solachidis, Nicholas Vretos and Petros Daras    
Recent technological developments have enabled computers to identify and categorize facial expressions to determine a person?s emotional state in an image or a video. This process, called ?Facial Expression Recognition (FER)?, has become one of the most ... ver más
Revista: Information

 
Hellena Hempe, Alexander Bigalke and Mattias Paul Heinrich    
Background: Degenerative spinal pathologies are highly prevalent among the elderly population. Timely diagnosis of osteoporotic fractures and other degenerative deformities enables proactive measures to mitigate the risk of severe back pain and disabilit... ver más
Revista: Information

 
Dimitris Mpouziotas, Jeries Besharat, Ioannis G. Tsoulos and Chrysostomos Stylios    
AliAmvra is a project developed to explore and promote high-quality catches of the Amvrakikos Gulf (GP) to Artas? wider regions. In addition, this project aimed to implement an integrated plan of action to form a business identity with high added value a... ver más
Revista: Information