Resumen
Protection schemes are usually implemented in the planning of transmission line operations. These schemes are expected to protect not only the network of transmission lines but also the entire power systems network during fault conditions. However, it is often a challenge for these schemes to differentiate accurately between various fault locations. This study analyses the deficiencies identified in existing protection schemes and investigates a different method that proposes to overcome these shortcomings. The proposed scheme operates by performing a wavelet transform on the fault-generated signal, which reduces the signal into frequency components. These components are then used as the input data for a multilayer perceptron neural network with backpropagation that can classify between different fault locations in the system. The study uses the transient signal generated during fault conditions to identify faults. The scientific research paradigm was adopted for the study. It also adopted the deduction research approach as it requires data collection via simulation using the Simscape electrical sub-program of Simulink within Matrix laboratory (MATLAB). The outcome of the study shows that the simulation correctly classifies 70.59% of the faults when tested. This implies that the majority of the faults can be detected and accurately isolated using boundary protection of transmission lines with the help of wavelet transforms and a neural network. The outcome also shows that more accurate fault identification and classification are achievable by using neural network than by the conventional system currently in use.