Redirigiendo al acceso original de articulo en 20 segundos...
Inicio  /  Applied Sciences  /  Vol: 11 Par: 8 (2021)  /  Artículo
ARTÍCULO
TITULO

Development of the Artificial Intelligence and Optical Sensing Methods for Oil Pollution Monitoring of the Sea by Drones

Oleg Bukin    
Dmitry Proschenko    
Denis Korovetskiy    
Alexey Chekhlenok    
Viktoria Yurchik and Ilya Bukin    

Resumen

The oil pollution of seas is increasing, especially in local areas, such as ports, roadsteads of the vessels, and bunkering zones. Today, methods of monitoring seawater are costly and applicable only in the case of big ecology disasters. The development of an operative and reasonable project for monitoring the sea surface for oil slick detection is described in this article using drones equipped with optical sensing and artificial intelligence. The monitoring system is implemented in the form of separate hard and soft frameworks (HSFWs) that combine monitoring methods, hardware, and software. Three frameworks are combined to fulfill the entire monitoring mission. HSFW1 performs the function of autonomous monitoring of thin oil slicks on the sea surface, using computer vision with AI elements for detection, segmentation, and classification of thin slicks. HSFW2 is based on the use of laser-induced fluorescence (LIF) to identify types of oil products that form a slick or that are in a dissolved state, as well as measure their concentration in solution. HSFW3 is designed for autonomous navigation and drone movement control. This article describes AI elements and hardware complexes of the three separate frameworks designed to solve the problems with monitoring slicks of oil products on the sea surface and oil products dissolved in seawater. The results of testing the HSFWs for the detection of pollution caused by marine fuel slicks are described.

 Artículos similares

       
 
Radoslaw Piotr Katarzyniak, Grzegorz Popek and Marcin Zurawski    
This article presents a model of an architecture of an artificial cognitive agent that performs the function of generating autoepistemic membership statements used to communicate beliefs about the belonging of an observed external object to a category wi... ver más
Revista: Applied Sciences

 
Cristobal Aguilar-Gallardo and Ana Bonora-Centelles    
Cell and gene therapies represent promising new treatment options for many diseases, but also face challenges for clinical translation and delivery. Hospital-based GMP facilities enable rapid bench-to-bedside development and patient access but require si... ver más
Revista: Applied Sciences

 
Angel E. Muñoz-Zavala, Jorge E. Macías-Díaz, Daniel Alba-Cuéllar and José A. Guerrero-Díaz-de-León    
This paper reviews the application of artificial neural network (ANN) models to time series prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series analysis, and by outlining some of the most popular ANN arc... ver más
Revista: Algorithms

 
Luana Conte, Emanuele Rizzo, Tiziana Grassi, Francesco Bagordo, Elisabetta De Matteis and Giorgio De Nunzio    
Pedigree charts remain essential in oncological genetic counseling for identifying individuals with an increased risk of developing hereditary tumors. However, this valuable data source often remains confined to paper files, going unused. We propose a co... ver más
Revista: Computation

 
Eduardo Lérias, Cristina Guerra and Paulo Ferreira    
The growing impact of artificial intelligence (AI) on Humanity is unavoidable, and therefore, ?AI literacy? is extremely important. In the field of education?AI in education (AIED)?this technology is having a huge impact on the educational community and ... ver más
Revista: Information