Resumen
Wind tunnel tests and large eddy simulations were conducted to investigate the dependency of wind forces and flow patterns on the spacing (S) for three tandem prisms with a small height?width ratio H/W = 0.4. At the spacing ratio S/W = 0.7, mean and root-mean-square drag of downstream prisms have large local peaks, and their magnitudes are larger than those at adjacent spacing ratios; these should be noted to ensure the safety and economy of the wind-resistant design of prism-like low-rise buildings. These phenomena are different from that of a small group of tandem prisms with a large H/W and a large group of tandem prisms with a small H/W. At S/W = 0.7, tap pressure time histories of downstream prisms are non-stationary with abrupt changes, but wind force time histories of downstream prisms are stationary, unlike a small group of tandem prisms with a large H/W, where both tap pressure and win d force time histories are non-stationary. Above phenomena at S/W = 0.7 are attributed to a special asymmetric time-averaged wake regime, which has two modes with symmetric wake flow directions and they irregularly switch. The duration of each mode is ruleless. This special wake regime was not observed in previous studies on tandem prisms.