Resumen
This study is dedicated to modeling the spatial variation in COVID-19 prevalence using the adaptive neuro-fuzzy inference system (ANFIS) when dealing with nonlinear relationships, especially useful for small areas or small sample size problems. We compiled a broad range of socio-demographic, environmental, and climatic factors along with potentially related urban land uses to predict COVID-19 prevalence in rural districts of the Golestan province northeast of Iran with a very high-case fatality ratio (9.06%) during the first year of the pandemic (2020?2021). We also compared the ANFIS and principal component analysis (PCA)-ANFIS methods for modeling COVID-19 prevalence in a geographical information system framework. Our results showed that combined with the PCA, the ANFIS accuracy significantly increased. The PCA-ANFIS model showed a superior performance (R2 (determination coefficient) = 0.615, MAE (mean absolute error) = 0.104, MSE (mean square error) = 0.020, and RMSE (root mean square error) = 0.139) than the ANFIS model (R2 = 0.543, MAE = 0.137, MSE = 0.034, and RMSE = 0.185). The sensitivity analysis of the ANFIS model indicated that migration rate, employment rate, the number of days with rainfall, and residential apartment units were the most contributing factors in predicting COVID-19 prevalence in the Golestan province. Our findings indicated the ability of the ANFIS model in dealing with nonlinear parameters, particularly for small sample sizes. Identifying the main factors in the spread of COVID-19 may provide useful insights for health policymakers to effectively mitigate the high prevalence of the disease.