Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Applied Sciences  /  Vol: 13 Par: 9 (2023)  /  Artículo
ARTÍCULO
TITULO

A Contrastive Learning Framework for Detecting Anomalous Behavior in Commodity Trading Platforms

Yihao Li and Ping Yi    

Resumen

The work can be applied to commodities, equities, e-commerce, and social networking platforms to detect anomalies in each user?s account to provide timely notification and thus reduce losses.

 Artículos similares

       
 
Xiaodong Cui, Zhuofan He, Yangtao Xue, Keke Tang, Peican Zhu and Jing Han    
Underwater Acoustic Target Recognition (UATR) plays a crucial role in underwater detection devices. However, due to the difficulty and high cost of collecting data in the underwater environment, UATR still faces the problem of small datasets. Few-shot le... ver más

 
Somaiyeh Dehghan and Mehmet Fatih Amasyali    
BERT, the most popular deep learning language model, has yielded breakthrough results in various NLP tasks. However, the semantic representation space learned by BERT has the property of anisotropy. Therefore, BERT needs to be fine-tuned for certain down... ver más
Revista: Applied Sciences

 
Dawei Luo, Heng Zhou, Joonsoo Bae and Bom Yun    
Reliability and robustness are fundamental requisites for the successful integration of deep-learning models into real-world applications. Deployed models must exhibit an awareness of their limitations, necessitating the ability to discern out-of-distrib... ver más
Revista: Applied Sciences

 
Yubo Zheng, Yingying Luo, Hengyi Shao, Lin Zhang and Lei Li    
Contrastive learning, as an unsupervised technique, has emerged as a prominent method in time series representation learning tasks, serving as a viable solution to the scarcity of annotated data. However, the application of data augmentation methods duri... ver más
Revista: Applied Sciences

 
Esmaeil Zahedi, Mohamad Saraee, Fatemeh Sadat Masoumi and Mohsen Yazdinejad    
Unsupervised anomalous sound detection, especially self-supervised methods, plays a crucial role in differentiating unknown abnormal sounds of machines from normal sounds. Self-supervised learning can be divided into two main categories: Generative and C... ver más
Revista: Algorithms