Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Algorithms  /  Vol: 13 Par: 12 (2020)  /  Artículo
ARTÍCULO
TITULO

Feature Selection from Lyme Disease Patient Survey Using Machine Learning

Joshua Vendrow    
Jamie Haddock    
Deanna Needell and Lorraine Johnson    

Resumen

Lyme disease is a rapidly growing illness that remains poorly understood within the medical community. Critical questions about when and why patients respond to treatment or stay ill, what kinds of treatments are effective, and even how to properly diagnose the disease remain largely unanswered. We investigate these questions by applying machine learning techniques to a large scale Lyme disease patient registry, MyLymeData, developed by the nonprofit LymeDisease.org. We apply various machine learning methods in order to measure the effect of individual features in predicting participants? answers to the Global Rating of Change (GROC) survey questions that assess the self-reported degree to which their condition improved, worsened, or remained unchanged following antibiotic treatment. We use basic linear regression, support vector machines, neural networks, entropy-based decision tree models, and k-nearest neighbors approaches. We first analyze the general performance of the model and then identify the most important features for predicting participant answers to GROC. After we identify the ?key? features, we separate them from the dataset and demonstrate the effectiveness of these features at identifying GROC. In doing so, we highlight possible directions for future study both mathematically and clinically.

 Artículos similares

       
 
Catarina Palma, Artur Ferreira and Mário Figueiredo    
The presence of malicious software (malware), for example, in Android applications (apps), has harmful or irreparable consequences to the user and/or the device. Despite the protections app stores provide to avoid malware, it keeps growing in sophisticat... ver más
Revista: Information

 
Urszula Libal and Pawel Biernacki    
An automatic honey bee classification system based on audio signals for tracking the frequency of workers and drones entering and leaving a hive.
Revista: Applied Sciences

 
Marwah Abdulrazzaq Naser, Aso Ahmed Majeed, Muntadher Alsabah, Taha Raad Al-Shaikhli and Kawa M. Kaky    
Cardiovascular disease is the leading cause of global mortality and responsible for millions of deaths annually. The mortality rate and overall consequences of cardiac disease can be reduced with early disease detection. However, conventional diagnostic ... ver más
Revista: Algorithms

 
Mohammad Shokouhifar, Mohamad Hasanvand, Elaheh Moharamkhani and Frank Werner    
Heart disease is a global health concern of paramount importance, causing a significant number of fatalities and disabilities. Precise and timely diagnosis of heart disease is pivotal in preventing adverse outcomes and improving patient well-being, there... ver más
Revista: Algorithms

 
Zijia Zheng, Yizhu Jiang, Qiutong Zhang, Yanling Zhong and Lizheng Wang    
The timely monitoring of urban water bodies using unmanned aerial vehicle (UAV)-mounted remote sensing technology is crucial for urban water resource protection and management. Addressing the limitations of the use of satellite data in inferring the wate... ver más
Revista: Water