Redirigiendo al acceso original de articulo en 19 segundos...
Inicio  /  Buildings  /  Vol: 11 Par: 2 (2021)  /  Artículo
ARTÍCULO
TITULO

Tests and Simulation of the Bond-Slip between Steel and Concrete with Recycled Aggregates from CDW

Miguel Bravo    
António P. C. Duarte    
Jorge de Brito and Luís Evangelista    

Resumen

This works intends to analyze, experimentally and numerically, the bond-slip behavior between steel and concrete made with recycled aggregates (RA) from construction and demolition waste (CDW) from several recycling plants in Portugal. Pull-out tests performed in concrete mixes with RA from CDW are described and the main results (bond strength, bond-slip curves and failure modes) are shown and discussed. Additionally, a comparison between experimental and analytical (using equations from the literature) results is made. Afterwards, finite element (FE) models using Abaqus are developed and compared with the experimental results. The interface behavior between steel and concrete follows that prescribed by the CEB-FIP Model Code and uses as input experimental results. After validation, the models show good results when extended to predict the bond-slip behavior of the remaining concrete mixes studied. It is generally concluded that, per each 10% of natural aggregates replaced with RA from CDW, the bond strength decreases in circa 3% (numerically) to 5% (experimentally). CEB-FIP Model Code equations are shown to be able to predict bond strength and, when used in FE models, to lead to accurate simulation of the bond-slip response of steel and concrete with RA from CDW: the average ratio between numerical and experimental bond strengths is 0.95. In the scope of the FE models developed, a simple equation to be used along with those prescribed by CEB-FIP, which accounts for fraction and ratio of aggregates replaced, is put forward, as a first approach, showing good results.

 Artículos similares

       
 
Cundong Xu, Junjiao Tian, Guoxia Wang, Haidong Lian, Rongrong Wang and Xiaomeng Hu    
The vortices, backflow, and siltation caused by sediment-laden flow are detrimental to the safe and efficient operation of pumping stations. To explore the effects of water?sediment two-phase flow on the velocity field, vorticity field, and sediment dist... ver más
Revista: Water

 
Qihua Deng, Junru Zhang, Feng Lu, Ziyan Fan, Yi Wang and Zhi Lin    
The high water content of the surrounding rock in loess tunnels will lead to the deterioration of rock strength, causing deformation and damage to the initial support structure and thereby affecting safety during construction and operation. This article ... ver más
Revista: Water

 
Yin Gu, Heyu Chen, Xin Bao, Zhiwei Jiang and Yongfeng Chen    
With the increasing construction of undersea tunnels in seismic-prone areas, accurately assessing their response to seismic conditions is crucial. To grasp the dynamic response of undersea tunnel structures to seismic waves, the shaking table test of wat... ver más
Revista: Buildings

 
Bin Wu, Jia-Ning Wu, Yan Lu, Wei-Yi Zhang, Dong Zhang and Song-Han Wang    
An ordinary double steel plate?concrete composite wall (ODSC wall) is composed of core concrete, the faceplates, and shear connectors such as studs, etc. Based on an ODSC wall, a new type of stiffened double steel plate?concrete composite wall (SDSC wall... ver más
Revista: Buildings

 
Asli Bor, Marcell Szabo-Meszaros, Kaspar Vereide and Leif Lia    
CFD models of intakes in high-head hydropower systems are rare due to the lack of geometric data and cost of modeling. This study tests two different types of software to see how modeling can be performed in a cost-effective way with scarce input data an... ver más
Revista: Water